K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Giả sử AB ⊥ CD ta phải chứng minh:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:

Nếu A C 2   −   A D 2   =   B C 2   −   B D 2   =   k 2  thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.

Nếu  A C 2   −   A D 2   =   B C 2   −   B D 2   = -   k 2  thì ta có và đưa về trường hợp xét như trên  A C 2   −   A D 2   =   B C 2   −   B D 2   =   - k 2 .

Chú ý. Từ kết quả của bài toán trên ta suy ra:

Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi A B 2   +   C D 2   =   A C 2   +   B C 2 .