\(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:

\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2\left(bk\right)^2-2bkb+5b^2}{2b^2+3bkb}=\dfrac{2b^2k^2-2b^2k+5b^2}{2b^2+3b^2k}=\dfrac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(1\right)\)

\(\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}=\dfrac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\dfrac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\dfrac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\)

8 tháng 4 2017

viết dấ ngoặc nhọn to lm sao Nguyễn Huy Tú

30 tháng 4 2017

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay a và c vào VP và VT sẽ bằng nhau

20 tháng 9 2017

Đại số lớp 7Ai help me vshihi

17 tháng 8 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow a=bk;c=dk\)

\(VP=\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2\left(bk\right)^2-3bkb+5b^2}{2b^2+3bkb}=\dfrac{2b^2.k^2-2b^2.k+5b^2}{2b^2+3b^2k}=\dfrac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(1\right)\)

\(VT=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}=\dfrac{2\left(dk\right)^2-3dkd+5d^2}{2\left(dk\right)^2+3dkd}=\dfrac{2.d^2.k^2-3d^2.k+5.d^2}{2.d^2.k^2+3d^2k}=\dfrac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

17 tháng 8 2017

thôi mk làm đc rùi ko cần nữa nha ^-^

21 tháng 5 2018

mk cảm ơn nh nha! mà bn để lên bàn chụp r đăng câu trả lời lên đúng ko, nhà mk cx có cái bàn như vậy

25 tháng 3 2020

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

19 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

nên 2 phân số trên bằng nhau (đpcm)

19 tháng 2 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)

<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)

<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)

Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ 1 và 2 => đpcm

16 tháng 10 2015

Điều kiện mẫu thức xác định là sao?