Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{-4}=\dfrac{z+1}{5}=\dfrac{x-y+z+1}{-3+4+5}=\dfrac{8}{6}=\dfrac{4}{3}\)
Do đó: x=-4; y=-16/3; z=17/3
\(A=4x^2y^2+5xyz-1=4\cdot16\cdot\dfrac{256}{9}+5\cdot\left(-4\right)\cdot\dfrac{-16}{3}\cdot\dfrac{17}{3}-1\)
=21815/9
Ta có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
=> M > 1 (1)
Lại có \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)
=> M > 2(2)
Từ (1) và (2) => 1 < M < 2
=> M không là số tự nhiên
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)
Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên
x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao
=> x/x+y+z > 0
=> x/x+y+z > x/x+y+z+t
Tương tự : y/x+y+t > y/x+y+z+t
z/y+z+t > z/x+y+z+t
t/x+z+t > t/x+y+z+t
=> M > x+y+z+t/x+y+z+t = 1
Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1
=> x/x+y+z < x+t/x+y+z+t
Tương tự : y/x+y+t < y+z/x+y+z+t
z/y+z+t < z+x/x+y+z+t
t/x+z+t < t+y/x+y+z+t
=> M < 2x+2y+2z+2t/x+y+z+t = 2
Vậy 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha
Vui lòng giải bài toán giúp mình nhé.
Tìm x, y,z biết
Đề bài đâu vậy bạn ?
....
Lời giải:
$\frac{x}{y}=\frac{7}{10}\Rightarrow \frac{x}{7}=\frac{y}{10}$
$\frac{y}{z}=\frac{5}{8}\Rightarrow \frac{y}{5}=\frac{z}{8}$
$\Rightarrow \frac{x}{7}=\frac{y}{10}=\frac{z}{16}$
Áp dụng TCDTSBN:
$\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{96}{32}=3$
$\Rightarrow x=7.3=21; y=10.3=30; z=16.3=48$
Bài 2:
Áp dụng TCDTSBN:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{z}{5}$
$=\frac{2x-3y+z}{6-12+5}=\frac{7}{-1}=-7$
$\Rightarrow x=(-7).3=-21; y=4(-7)=-28; z=5(-7)=-35$
thi violympic nên tớ chỉ ghi đáp án thui
Minh Triều ừ