K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

thi violympic nên  tớ chỉ ghi đáp án thui

1 tháng 1 2016

Minh Triều ừ 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-3}=\dfrac{y}{-4}=\dfrac{z+1}{5}=\dfrac{x-y+z+1}{-3+4+5}=\dfrac{8}{6}=\dfrac{4}{3}\)

Do đó: x=-4; y=-16/3; z=17/3

\(A=4x^2y^2+5xyz-1=4\cdot16\cdot\dfrac{256}{9}+5\cdot\left(-4\right)\cdot\dfrac{-16}{3}\cdot\dfrac{17}{3}-1\)

=21815/9

22 tháng 6 2021

Ta có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)

=> M > 1 (1)

Lại có \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Khi đó  \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)

\(< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)

=> M > 2(2)

Từ (1) và (2) => 1 < M < 2

=> M không là số tự nhiên 

22 tháng 6 2021

trong tkhđ của mình có nhé 

1 tháng 11 2019

không rõ đề bài

NM
6 tháng 8 2021

ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)

Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên

6 tháng 8 2021

x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao 

=> x/x+y+z > 0

=> x/x+y+z > x/x+y+z+t

Tương tự : y/x+y+t > y/x+y+z+t

z/y+z+t > z/x+y+z+t

t/x+z+t > t/x+y+z+t

=> M > x+y+z+t/x+y+z+t = 1

Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1

=> x/x+y+z < x+t/x+y+z+t

Tương tự : y/x+y+t < y+z/x+y+z+t

z/y+z+t < z+x/x+y+z+t

t/x+z+t < t+y/x+y+z+t

=> M < 2x+2y+2z+2t/x+y+z+t = 2

Vậy 1 < M < 2 

=> M ko phải là số tự nhiên

Tk mk nha

2 tháng 4 2020

Vui lòng giải bài toán giúp mình nhé.

Tìm x, y,z biết

Đề bài đâu vậy bạn ?

....

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:

$\frac{x}{y}=\frac{7}{10}\Rightarrow \frac{x}{7}=\frac{y}{10}$

$\frac{y}{z}=\frac{5}{8}\Rightarrow \frac{y}{5}=\frac{z}{8}$
$\Rightarrow \frac{x}{7}=\frac{y}{10}=\frac{z}{16}$
Áp dụng TCDTSBN:

$\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{96}{32}=3$

$\Rightarrow x=7.3=21; y=10.3=30; z=16.3=48$

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Bài 2:

Áp dụng TCDTSBN:

$\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{z}{5}$

$=\frac{2x-3y+z}{6-12+5}=\frac{7}{-1}=-7$

$\Rightarrow x=(-7).3=-21; y=4(-7)=-28; z=5(-7)=-35$