K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dung tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

BÌnh phương các vế ta được:

\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)

\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(đpcm)

12 tháng 7 2017

​Giải:

a+d=b+c=>(a+d)2=(b+c)2

=>a2+2ad+d2=b2+2bc+c2 (1)

Vì a2+d2=b2+c2 nên từ (1)=> 2ad=2ab

Hay ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

1 tháng 12 2015

Có: \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\)

=> \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)

1 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{3aa}{3ba}=\frac{2ac}{2da}=\frac{3a^2}{3ba}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{3a^2}{3ba}=\frac{2ac}{2da}=\frac{3a^2-2ac}{3ba-2da}\)

\(\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2}{b^2}\)

sai đề ko????

11 tháng 12 2019

a)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)

c)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)

\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)

Chúc bạn học tốt!