K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a, xét 2 tg vuông ABD và EBD có

góc A1 = góc E1

góc B1 = góc B2

BD cạnh chung

=> tg ABD= tg EBD

=> BA = BE

=> tg ABE cân

ta có trong tg cân đg phân giác hạ từ đỉnh xuống cạnh đối diện cũng là đg trug trực của tg

hay bd là đg trug trực của ae

b, xét 2 tg vuông ADF và EDC có

góc A2 = góc E2

AD = BE ( tg ABD = tg EBD )

góc D1 = góc D2 ( đối đỉnh )

=> tg ADF = tg EDC

=> DF = DC

c, ta có tg EDC có DC > DE ( ch > cgv )

mà AD = ED

=> AD < DC 

d, ta có BA + AF = BF

BE + EC = BC

 mà BA = BE

AF = EC ( tg ADF = tg EDF )

=> BF = BC 

=> tg BFC cân

=> góc F = ( 180 độ - góc B ) /2              (1)

vì AB = EB => tam giác ABE cân

=> góc BAE = ( 180 độ - góc B ) /2            (2)

từ (1) và (2) => góc F = góc BAE

mà 2 góc này đồng vị

=> AE // FC

17 tháng 6 2017

A B C D F 1 2 1 3

a, Xét \(\Delta ABD;\Delta EBD\) có:

\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)

BD chung

\(\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

=> AB=EB => B nằm trên trung trực của AE

AD=ED => D nằm trên trung trực của AE

=> BD là trung trực của AE.

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF;\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)

Vậy DF=DC

c, Ta có:

\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)

\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)

Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF

=> \(BD\perp FC\). (1)

Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => AE//FC

Vậy AE//FC

 Tam giác ABD=t.g EBD (cạnh huyền_góc nhọn) 
=> BA =BE => B thuộc đường trung trực của AE (1)
=> DA =DE => D thuộc đường trung trực của AE(2)
TỪ 1 VÀ 2 SUY RA BDlà đường trung trực của AE
B, Tam giác AFD=t.g ECD (cạnh góc vuông_góc nhọn) => DF=DC
 Xét tam giác vuông EDC (góc E =90) có DC là cạnh huyền 
=> DC>DE (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AD=ED (CMT) nên AD<DC
d, Vì t.g ABD=t.g EBD nên suy ra AB=EB => t.g ABE cân tại B => góc BAE= (180 độ - góc ABC):2 (3)
Chứng minh được t.g BDF=t.g BDC (c.c.c) => BF=BC
=> t.g FBC cân tại B => góc BFC= (180 độ - góc ABC):2 (4)
TỪ 3 VÀ 4 SUY RA góc BAE=góc BFC
Mà 2 góc này ở vị trí đồng vị nên suy ra AE//FC

tích nha

23 tháng 3 2018

Bạn ơi đây là câu a,nhé

Chương II : Tam giác

23 tháng 3 2018

Câu c nè

Chương II : Tam giác

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đó: ΔBAD=ΔBED
Suy ra: DA=DE

b: Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

5 tháng 1 2020

A B C D E 1 2

Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)

CM: Xét t/giác ABD và t/giác EBD

có: AB = BE (gt)

  \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BD : chung

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có : t/giác ABD = t/giác EBD (cmt)

=> AD = DE (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)

c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE

 AD = DE (cmt) => D \(\in\)đường trung trực của AE

mà B \(\ne\)D => BD là đường trung trực của AE