Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b:
Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>AH=EF
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(FA\cdot FC=FH^2\)
\(AE\cdot EB+FA\cdot FC=EH^2+FH^2=EF^2=AH^2\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
a: \(BD\cdot CE\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=BH^2\)
hay \(BE=\dfrac{BH^2}{BA}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{CH^2}{CA}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)
a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)
nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)
nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)
b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)
nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)
nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)
\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)
hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)
mà \(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)
nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)
\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)
hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
b: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
e: \(BE\cdot CF\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)
\(=EF^3\)