Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
=>ΔCHA=ΔCHD
b: Xét tứ giác ABDE có
H la trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuôg góc AC
Xét ΔCAD có
CH,DE là đường cao
CH cắt DE tại E
=>E là trực tâm
Hình tự vẽ
a, Xét \(\Delta ABH\)và \(\Delta DBH\)
Có : HA=HD
BH là cạnh chung
\(\widehat{AHB}=\widehat{AHB}=90^0\)
=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)
đnag nghĩ tiếp ...
Nhầm : \(\widehat{AHB}=\widehat{DHB}=90^0\)
b, Theo định lí 3 cạnh của tam giác có số đo là 1800
Như ta đã bt \(\widehat{DHB}=90^0\)
\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)
\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)
\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)
Mà \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)
\(90^0+90^0=\widehat{BDC}\)
\(180^0=\widehat{BDC}\)
Vậy \(\widehat{BDC}=180^0\)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HA=HD
HB chung
DO đó: ΔABH=ΔDBH
b: Xét ΔBAC và ΔBDC có
BA=BD
góc ABC=góc DBC
BC chung
DO đó: ΔBAC=ΔBDC
=>góc BDC=90 độ
c: ΔHBA=ΔHBD
nên góc HBA=góc HBD
=>góc HAC=góc HBD
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔABD=ΔHBD
b: Xét ΔDAE vuông tại A và ΔDHC vuông tại H có
DA=DH
AE=HC
=>ΔDAE=ΔDHC
=>DE=DC
A C B H E 8cm 6cm
a)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
BC2= AB2+AC2= 62+82= 36 + 64= 100
\(\Rightarrow BC=\sqrt{100}=10cm\)
b)
Xét tam giác AHD và tam giác AHB:
AHD=AHB = 90o
AH chung
HD=HB
\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)
\(\Rightarrow\)AB=AD (2 cạnh tương ứng)
c)
Xét tam giác AHB và tam giác EHD:
HA = HE
AHB=EHD (đối đỉnh)
HD=HB
\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)
\(\Rightarrow\)BAH=DEH (2 góc tương ứng)
Ta có:
BAH+HAC = 90o (phụ nhau)
\(\Leftrightarrow\) DEH +HAC =90o
\(\Rightarrow\)tam giác ACE vuông tại C
\(\Rightarrow\)ED vuông góc với AC
d)
Ta có : AH là cạnh góc vuông lớn của tam giác AHD.
DH là cạnh góc vuông bé của tam giác AHD
\(\Rightarrow\)AH > DH (1)
Mà: AE = 2 * AH (2)
BD= 2* DH (3)
\(\Rightarrow\)AE > BD
B A C H E D
a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:
BC2=AB2+AC2
\(\Rightarrow\) BC2=62+82=36+64=100
\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)
b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung
\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )
c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)
\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BA//EC.
Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC