K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD

=>ΔCHA=ΔCHD

b: Xét tứ giác ABDE có

H la trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuôg góc AC

Xét ΔCAD có

CH,DE là đường cao

CH cắt DE tại E

=>E là trực tâm

Hình tự vẽ 

a, Xét \(\Delta ABH\)và \(\Delta DBH\)

Có : HA=HD

        BH là cạnh chung 

        \(\widehat{AHB}=\widehat{AHB}=90^0\)

=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)

đnag nghĩ tiếp ... 

Nhầm  : \(\widehat{AHB}=\widehat{DHB}=90^0\)

b, Theo định lí 3 cạnh của tam giác có số đo là 1800

Như ta đã bt \(\widehat{DHB}=90^0\)

\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)

\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)

\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)

Mà  \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)

\(90^0+90^0=\widehat{BDC}\)

\(180^0=\widehat{BDC}\)

Vậy \(\widehat{BDC}=180^0\)

11 tháng 12 2022

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HA=HD

HB chung

DO đó: ΔABH=ΔDBH

b: Xét ΔBAC và ΔBDC có

BA=BD

góc ABC=góc DBC

BC chung

DO đó: ΔBAC=ΔBDC

=>góc BDC=90 độ

c: ΔHBA=ΔHBD

nên góc HBA=góc HBD

=>góc HAC=góc HBD

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔABD=ΔHBD

b: Xét ΔDAE vuông tại A và ΔDHC vuông tại H có

DA=DH

AE=HC

=>ΔDAE=ΔDHC

=>DE=DC

2 tháng 5 2016

A C B H E 8cm 6cm

a)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2= AB2+AC2= 62+82= 36 + 64= 100

\(\Rightarrow BC=\sqrt{100}=10cm\)

b)

Xét tam giác AHD và tam giác AHB:

AHD=AHB = 90o

AH chung

HD=HB

\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)

\(\Rightarrow\)AB=AD (2 cạnh tương ứng)

c)

Xét tam giác AHB và tam giác EHD:

HA = HE

AHB=EHD (đối đỉnh)

HD=HB

\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)

\(\Rightarrow\)BAH=DEH (2 góc tương ứng)

Ta có:

         BAH+HAC = 90o (phụ nhau)

\(\Leftrightarrow\)   DEH +HAC =90o 

\(\Rightarrow\)tam giác ACE vuông tại C

\(\Rightarrow\)ED vuông góc với AC

d)

Ta có : AH là cạnh góc vuông lớn của tam giác AHD.

              DH là cạnh góc vuông bé của tam giác AHD

\(\Rightarrow\)AH > DH (1)

Mà: AE = 2 * AH           (2)

       BD= 2* DH             (3)

\(\Rightarrow\)AE > BD

2 tháng 5 2016

B A C H E D

a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

\(\Rightarrow\) BC2=62+82=36+64=100

\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)

b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung

\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )

c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)

\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên BA//EC.

Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC