K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

Ko gian mẫu 6 cách 

Biến cố A '' lấy được 1 số chẵn '' 3 cách 

Xác suất P(A) = 1/2 

 

 

12 tháng 5 2022

fre ma vua co

29 tháng 4 2023

Không gian mẫu: n(Ω)= 6

Goị biến cố A:" Lấy được một số chẵn"

A={2;4;8}   ➝ n(A)=3

Vậy p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{3}{6}\)=\(\dfrac{1}{2}\)

TH1: tấm chia hết cho 5 là số lẻ 

=>Có \(5\cdot C^3_{24}\cdot C^4_{25}\left(cách\right)\)

TH2: tấm chia hết cho 5 là sốchẵn

=>Có \(5\cdot C^3_4\cdot C^4_{25}\left(cách\right)\)

=>n(A)=506000

n(omega)=\(C^8_{50}=536878650\)

=>P=40/42441

NV
21 tháng 4 2023

Không gian mẫu: \(A_6^3=120\)

Gọi số cần lập có dạng \(\overline{abc}\)

Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)

Chọn và hoán vị cặp ab: \(A_5^2=20\) cách

\(\Rightarrow1.20=20\) số chia hết cho 5

Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)

9 tháng 5 2023

Gọi \(\overline{abc}\) là số tự nhiên có 3 chữ số khác nhau.

Chọn a có 5 cách \(\left(a\ne0\right)\)

Chọn b có 5 cách \(\left(b\ne a\right)\)

Chọn c có 4 cách \(\left(c\ne a,c\ne b\right)\)

Theo quy tắc nhân, có \(5.5.4=100\) cách chọn số tự nhiên có 3 chữ số khác nhau.

\(\Rightarrow n\left(\Omega\right)=100\)

Gọi \(A:``\) Lấy 2 số ngẫu nhiên có tích là số chẵn \(''\)

Để lấy 2 số ngẫu nhiên có tích là số chẵn thì ít nhất 1 trong 2 số phải là số chẵn.

\(TH_1:\) Cả 2 số lấy ra đều là số chẵn có \(C^2_3=6\) cách.

\(TH_2:\) 2 số lấy ra có 1 số là chẵn và 1 số là lẻ có \(C^1_3.C^1_3=9\) cách.

Theo quy tắc cộng, có \(6.9=54\) cách lấy 2 số ngẫu nhiên có tích là số chẵn.

\(\Rightarrow n\left(A\right)=54\)

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{54}{100}=\dfrac{27}{50}\)

 

NV
7 tháng 5 2023

Có 20 cây số lẻ (1;3;5...;39) và 20 cây số chẵn (2;4;...;40)

Để tổng 5 cây là chẵn \(\Rightarrow\) số cây lẻ phải chẵn

\(\Rightarrow\) Các trường hợp thỏa mãn gồm: 0 lẻ 5 chẵn, 2 lẻ 3 chẵn, 4 lẻ 1 chẵn

\(\Rightarrow C_{20}^5+C_{20}^2.C_{20}^3+C_{20}^4.C_{20}^1\) cách chọn thỏa mãn

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gọi số lập được có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \) với \(\left( {{a_1},{a_2},{a_3},{a_4},{a_5}} \right) = 1,2,3,4,5\)

Tổng số khả năng xảy ra của phép thử là \(n\left( \Omega  \right) = 5!\)

a) Biến cố “là số chẵn” xảy ra khi chữ số tận cùng là số chẵn, suy ra \({a_5} = \left\{ {2,4} \right\}\)

Số kết quả thuận lợi cho biến cố “là số chẵn” là \(n = 4!.2\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)

b) Biến cố “chia hết cho 5” xảy ra khi chữ số tận cùng là số 5

Suy ra, số kết quả thuận lợi cho biến cố “chia hết cho 5” là \(n = 4!.1\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.1}}{{5!}} = \frac{1}{5}\)

c) Biến cố “\(a \ge 32000\)” xảy ra khi có dạng như dưới đây\(\overline {5{a_2}{a_3}{a_4}{a_5}} ;\overline {4{a_2}{a_3}{a_4}{a_5}} ;\overline {34{a_3}{a_4}{a_5}} ;\overline {35{a_3}{a_4}{a_5}} ;\overline {32{a_3}{a_4}{a_5}} \)

Suy ra, số kết quả thuận lợi cho biến cố “\(a \ge 32000\)” là \(n = 2.4! + 3.3!\)

Vậy xác suất của biến cố “\(a \ge 32000\)” là \(P = \frac{{2.4! + 3.3!}}{{5!}} = \frac{{11}}{{20}}\)

d) Để sắp xếp các chữ số của ta cần thực hiện hai công đoạn

Công đoạn 1: Sắp xếp 2 chữ số chẵn trước có \(2!\) cách

Công đoạn 2: Sắp xếp 3 chũ số lẻ xen vào 3 chỗ trồng tạo bởi 2 chữ số chẵn có \(3!\) cách

Suy ra, số kết quả thuận lợi cho biến cố “Trong các chữ số của  không có hai chữ số lẻ nào đứng cạnh nhau” là \(2!.3!\)

Vậy xác suất của biến cố là \(P = \frac{{2!.3!}}{{5!}} = \frac{1}{{10}}\)