Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, c/m :tgABC=tgCDA
Xét 2tg:ABC va CDA
Co : AC : canh chunh
BM=MD (gt)
BF=ED (gt)
=>tgABC=tgCDA(ccc)
b,C/M AF _|_ BC
Có: tgABC=tgCDA (cmt)(ccc)
Ma AF//CE (Vi : vuong goc tai F va E )
Va:A1=C2(slt)
Va:A2=C1(slt)
=> AF//CE
vỚI : AD//BC
Vì:ED=BF(gt)
E=F(vuog goc)
=> AD//BC
Vậy AF _|_ BC (Vi:CE_|_ AD)
C, KO BT LAM **** NHE
a) Xét tứ giác ABCD, có:
AC và BD là 2 đường chéo cắt nhau tại M
M là trung điểm AC (gt)
M là trung điểm BD (BF= DE - gt)
=> tứ giác ABCD là hình bình hành
Xét tg ABC và tg CDA có:
AB = CD (2 cạnh bên hình bình hành)
góc BAC = góc ACD (so le trong của AB//DC - 2 cạnh hình bình hành)
AC là cạnh chung
=> tg ABC = tg CDA (đpcm)
b) xét tg ABF và tg CDE, có:
AB = DC (2 cạnh bên hình bình hành)
góc ABF = góc ADC (2 góc đối hình bình hành bằng nhau)
BF = DE (gt)
=> tg ABF = tg CDE (c-g-c)
=> góc DEC = góc AFB (2 góc tương ứng)
mà góc DEC = 90 độ (CE vuông góc AD - gt)
=> góc AFB = 90 độ
=> AF vuông góc với BC (gt)
c) ta có: AD // BC (2 cạnh hình bình hành)
=> góc DEC = góc ECB (so le trong)
=> góc DEC = góc ECB = 90 độ
xét tứ giác AECF có:
góc AEC = góc ECF = góc AFC = 90 độ
=> tứ giác AECF là hình chữ nhật
có AC và EF là 2 đường chéo
mà 2 đường chéo hình chữ nhật cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm AC (gt)
=> M cũng là giao điểm 2 đường chéo hình chữ nhật
=> M là trung điểm EF
=> M,E,F thẳng hàng (đpcm)