Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABM vuông và ΔACM vuông có:
AM chung
AB=AC
=> ΔABM = ΔACM
=> BAM = CAM ( 2 góc t.ư)
=> AM là p/g của góc BAC
Bài dễ:
Vẽ hình ra bạn( sửa lại cái đề là AB=AC)
a, Ta có: góc B = góc C có chung cạnh BC
E=D=90o
Do đó tg BDC= tg CEB
b, kí hiệu góc B1 ở trên B2 ở dưới; bên góc C cũng vậy
Ta có : gB=gC; gB2=gC2;
gB=gB1+gB2; gC=gC1+gC2;
Do đó gB1=gB2(dpcm)
c, Vì ABC là tgiac cân và AI cắt BC tại trung điểm H
Nên AH vuông góc vs BC hay AI vuông góc vs BC
---end---
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)
a.Xét tam giác ABM và ACM có: BM =MC ; góc ABM = góc ACM ; AB =AC
--> tam giác ABM = tam giác ACM ( cgc)
b. Xét tam giác BHM và CKM có: BHM = CKM =90 độ ; BM =MC ; HBM = KCM
--> tam giác BHM = CKM ( cạnh huyền - góc nhọn ) --> BH = CK ( 2 cạnh tương ứng )
c. Ta có : MK vuông góc AC , BP vuông góc AC --> MK// BP --> góc KMC = góc PBC (đồng vị )
mà KMC = HMB ( tam giác BHM = CKM ) --> góc PBC = HMB --> tam giác IBM cân