Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 2 cạnh góc vuông là `a,b(m)(a,b>0)`
Theo bài `a+b=28<=>a=28-b`
Áp dụng đl pytago vào ta có:
`a^2+b^2=20^2=400`
`<=>(28-b)^2+b^2=400`
`<=>b^2-56b+784+b^2-400=0`
`<=>2b^2-56b+384=0`
`<=>b^2-28b+192=0`
`<=>b_1=16,b_2=12`
`<=>a_1=12,a_2=16`
Vậy diện tích tam giác vuông là `(ab)/2=96m^2`
Gọi `a,b` là độ dài 2 cạnh góc vuông, `c` là độ dài cạnh huyền `(m) (a,b,c >0)`
Theo đề bài: `a+b=28` (1)
Áp dụng định lí Pytago:
`a^2+b^2=c^2=20^2=400` (2)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}a+b=28\\a^2+b^2=400\end{matrix}\right.\)
Giải hệ ta được: `(a,b) = (16;12) ; (12;16)`
Diện tích là: `S=1/2 . 16 .12 = 96(m^2)`
Vậy diện tích là `96m^2`.
Gọi hai cạnh góc vuông là x và y.
ta có:
x/3 = y/4
x2 + y2 = 102 (*)
Đặt x/3 = y/4 = t
⇒ x = 3 . t và y = 4 . t
Thay x, y vào (*) ta có:
(3 . t)2 + (4 . t)2 = 102
[32 + 42] . t2 = 102
t2 = 4
⇒ t = 2
⇒ x = 3 . 2 = 6 và y = 4 . 2 = 8
(chắc vậy -_-)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Gọi ba cạnh của ▲ là a,b,c>0
Giả sử cạnh huyền ▲ là a thì:
a² =b²+c² <=> b²+c²=13² =169 (1)
chu vi ▲ là 30 <=> a+b+c =30 <=> b+c = 30-13=17
<=> c= 17-b (2)
thay (2) vào (1) đc:
b² + (17-b)² =169 <=> b² -17b + 60 = 0
<=> (b-12)(b-5) = 0
<=> b=5 hoặc b=12
tương ứng c=12 và c=5
Vậy hai cạnh góc vuông dài 5m và 12m
Đáp án A
Gọi độ dài cạnh góc vuông nhỏ hơn của tam giác vuông đó là x (cm); (0 < x < 20)
Cạnh góc vuông lớn hơn của tam giác vuông có độ dài là: x + 4
Vì cạnh huyền bằng 20 cm nên theo định lý Py-ta-go ta có:
Vậy độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: 12 cm và 12 + 4 = 16 cm
Đáp án A
Gọi độ dài cạnh góc vuông nhỏ hơn của tam giác vuông đó là x (cm); (0 < x < 20)
Cạnh góc vuông lớn hơn của tam giác vuông có độ dài là: x + 4
Vì cạnh huyền bằng 20 cm nên theo định lý Py-ta-go ta có:
Vậy độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: 12 cm và 12 + 4 = 16 cm
Gọi độ dài cạnh huyền là a và cạnh góc vuông chưa biết là b, cạnh đã biết là c
Ta có b/a =4/5
⇒ b = 4a/5
Khi đó áp dụng định lý Pytago ta có
a²= b²+ c²
Thay b vào ta có
a² =(4a/5)² +9²
a² = 16a²/25 +81
9a²/25 = 81
⇒ a² = 225
⇒ a =15cm
=> b= 12cm
Khi đó AD hệ thức lượng trong tam giác ta có ( gọi độ dài hình chiếu của b và c xuống a lần lượt là x và y)
Ta có b² = x.a
⇔ 12² = x . 15
⇒ x =48/5 =9.6cm
Và c² = y.a
⇒ 9² = y.15
⇒y= 27/5 =5.4cm
Gọi độ dài 1 cạnh góc vuông là x (với 0<x<14)
Độ dài cạnh còn lại là: \(14-x\)
Do tích độ dài 2 cạnh là 48 nên ta có pt:
\(x\left(14-x\right)=48\)
\(\Leftrightarrow x^2-14x+48=0\Rightarrow\left[{}\begin{matrix}x=6\\x=8\end{matrix}\right.\)
Độ dài cạnh huyền là: \(\sqrt{6^2+8^2}=10\)