Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình dễ vẽ; bạn tự vẽ nhé!
a) Xét tam giác HBA và tam giác ABC; ta có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{B}\)- chung
\(\Rightarrow\)tam giác HBA đồng dạng tam giác ABC (g-g)
b) Xét tam giác ABH và tam giác ADH có:
\(\widehat{AHB}=\widehat{AHD}=90^0\)
\(AH\)- cạnh chung
\(BH=HD\)(GT)
\(\Rightarrow\)Tan giác ABD = tam giác ADH (c-g-c)
\(\Rightarrow\)AB = AD (2 cạnh tương ứng)
Vì tam giác HBA đồng dạng với tam giác ABC
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{BC}\Rightarrow HB.BC=AB.AB=AB.AD\)(Vì AB = AD theo chứng minh trên)
Vậy AB.AD=BH.BC (ĐPCM)
Đáp án:
a) △ABC∽△HAC△ABC∽△HAC
b) EC.AC=DC.BCEC.AC=DC.BC
c) △BEC∽△ADC△BEC∽△ADC, △ABE△ABE vuông cân tại A
Giải thích các bước giải:
a)
Xét △ABC△ABC và △HAC△HAC:
ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)
ˆCC^: chung
→△ABC∽△HAC→△ABC∽△HAC (g.g)
b)
Xét △DEC△DEC và △ABC△ABC:
ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)
ˆCC^: chung
→△DEC∽△ABC→△DEC∽△ABC (g.g)
→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC
c)
Xét △BEC△BEC và △ADC△ADC:
DCEC=ACBCDCEC=ACBC (cmt)
ˆCC^: chung
→△BEC∽△ADC→△BEC∽△ADC (c.g.c)
Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)
→AH//ED→AH//ED
△AHC△AHC có AH//EDAH//ED (cmt)
→AEAC=HDHC→AEAC=HDHC (định lý Talet)
Mà HD=HAHD=HA (gt)
→AEAC=HAHC→AEAC=HAHC
Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)
→ABAC=HAHC→ABAC=HAHC
→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB
→△ABE→△ABE cân tại A
Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)
→△ABE→△ABE vuông cân tại A
a) xét tam giác ABD, có AH vuong với BD, HB=HD ==> tam giác này cân
=> góc ABH = góc ADH
Lại có góc ADH = góc CDI
Ta có góc ABH + góc ABC = 90
và góc BCI + CDI =90
==> g ACB = g BCI (dfcm)
b) Gọi AH giao CI tại E
có CB là phan giac góc ACI (cm trên)
mà CH vuong góc vs AI
==> H là trung diem AE
Tam giác vuong AIE có H là trung điểm AI
=> HA=HI = HE
vậy tam giác AHI cân