Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Thánh Ca ơi đây là toán lớp 9 mình nhờ bạn giải toán lớp 9 chứ ko phải là mấy bài toán lớp 3, 4 đâu nha bạn
bạn ko giải đc thì thôi đừng bình luận để mình mong chờ
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
a) AB và AC là tiếp tuyến của (O;R) =>AB⊥OB và AC⊥OC =>B và C nhìn OA góc 90° =>B và C cùng nằm trên đường tròn đường kính AO hay A,B,C,) cùng nằm trên đường tròn đường kính AO.
Hai △AOB và △AOC là 2 tam giác vuông có chung cạnh huyền OA và 2 cạnh góc vuông OB=OC (cùng = R) => △AOB = △AOC =>OA là phân giác ∠BOC mà △BOC cân tại B =>OA là đường trung trực của BC.
b)xét △ODB và △OBA có 2 góc vuông tại D và B, chung góc nhọn tại O =>△ODB ∼ △OBA =>OD/OB=OB/OA =>OA.OD=OB²=R².
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
A B O C H D E F
a) Do C thuộc đường tròn nên \(\widehat{ACB}=90^o\)
Áp dụng định lý Pi-ta-go: \(BC=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét tam giác vuông ACB, đường cao CH. Áp dụng hệ thức lượng trong tam giác, ta có:
\(CH.AB=CA.BC\Rightarrow CH=\frac{6.8}{10}=4,8\left(cm\right)\)
Ta thấy \(sin\widehat{ABC}=\frac{AC}{AB}=\frac{6}{10}\Rightarrow\widehat{ABC}\approx36^o52'\)
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có: \(DC=DB\) và DO là phân giác góc BDC.
Vậy thì DO cũng là đường trung trực của BC hay \(DO\perp BC.\)
c) Xét tam giác vuông ABC, đường cao CH, ta có : \(AH.AB=AC^2\) (Hệ thức lượng)
Xét tam giác vuông AEB, đường cao AC, ta có: \(AC^2=EC.CB\) (Hệ thức lượng)
Vậy nên \(AH.AB=EC.CB\)
d) Ta thấy HC // AE (Cùng vuông góc với AB)
Áp dụng Ta let ta có: \(\frac{IH}{AF}=\frac{IC}{EF}\left(=\frac{IB}{FB}\right)\)
mà IH = IC nên AF = FE.
Xét tam giác vuông ACE có F là trung điểm cạnh huyền nên FA = FE = FC.
Xét tam giác FAO và FCO có: FO chung, FA = FC, AO = CO nên \(\Delta FAO=\Delta FCO\left(c-c-c\right)\)
\(\Rightarrow\widehat{FCO}=\widehat{FAO}=90^o\)
Vậy nen FO là tiếp tuyến của đường tròn.
A B C O I K E M N G
a) Xét đường tròn (O) bán kính AB có điểm E nằm trên cung AB => ^AEB=900 hay ^MEN=900
Tương tự ^CNB=^AMC=900 => ^EMC=^ENC=900.
Xét tứ giác MENC: ^MEN=^EMC=^ENC=900 => Tứ giác MENC là hình chữ nhật.
=> MN=EC (đpcm).
b) Gọi G là tâm của hình chữ nhật MANC => GN=GC.
Xét \(\Delta\)GCK và \(\Delta\)GNK: GC=GN; GK chung; CK=NK => \(\Delta\)GCK=\(\Delta\)GNK (c.c.c)
=> ^GCK=^GNK. Mà ^GCK=900 => GNK=900 => MN vuông góc NK
=> MN là tiếp tuyến của (K) với N là tiếp điểm.
Tương tự ta cũng c/m được MN là tiếp tuyến của (I) với M là tiếp điểm.
=> MN là tiếp tuyến chung của (I) và (K) (đpcm).
c) Dễ thấy \(\Delta\)ACE ~ \(\Delta\)ECB => \(\frac{AC}{CE}=\frac{CE}{CB}\Rightarrow CE^2=AC.CB\)
Thay AC=10 (cm); CB=40 (cm) vào biểu thức trên, ta có:
\(CE^2=10.40=400\Leftrightarrow CE=\sqrt{400}=20\)(cm)
Lại có CE=MN (cmt) => MN =20 (cm).
d) Ta có: \(S_{\frac{1}{2}\left(I\right)}=\frac{\left(\frac{1}{2}AC\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.10\right)^2.3,14}{2}=39,25\)(cm2)
\(S_{\frac{1}{2}\left(K\right)}=\frac{\left(\frac{1}{2}CB\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.40\right)^2.3,14}{2}=628\)(cm2)
\(S_{\frac{1}{2}\left(O\right)}=\frac{\left[\frac{1}{2}\left(AC+CB\right)\right]^2.3,14}{2}=\frac{\left(\frac{1}{2}.50\right)^2.3,14}{2}=981,25\)(cm2)
\(\Rightarrow S_{G.H}=S_{\frac{1}{2}\left(O\right)}-\left(S_{\frac{1}{2}\left(I\right)}+S_{\frac{1}{2}\left(K\right)}\right)=981,25-\left(39,25+628\right)=314\)(cm2)
(Chú thích \(S_{G.H}:\)Diện tích hình được giới hạn bở 3 nửa đường tròn).
ĐS:...