K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

A B C D E F H

Với \(AF;\)  \(BD;\)  \(CE\)  lần lượt là ba đường cao ứng với các cạnh  \(BC;\)  \(AC;\)  \(AB\)  của  \(\Delta ABC\), ta có:

\(\frac{S_{BHC}}{S_{ABC}}=\frac{\frac{1}{2}.HF.BC}{\frac{1}{2}.AF.BC}=\frac{HF}{AF}\)  \(\left(1\right)\)

\(\frac{S_{AHC}}{S_{ABC}}=\frac{\frac{1}{2}.HD.AC}{\frac{1}{2}.CD.AC}=\frac{HD}{CD}\)  \(\left(2\right)\)

\(\frac{S_{AHB}}{S_{ABC}}=\frac{\frac{1}{2}.HE.AB}{\frac{1}{2}.BE.AB}=\frac{HE}{BE}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), với chú ý rằng  \(S_{BHC}+S_{AHC}+S_{AHB}=S_{ABC}\), ta được:

\(\frac{HF}{AF}+\frac{HD}{CD}+\frac{HE}{BE}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy, ....

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé

7 tháng 5 2019

2/Xét ∆ABD và ∆ACE có:

chung

∆ABD ∽ ∆ACE (g.g)

b.

Xét ∆HDC và ∆HEB có:

(vì BD AC, CE AB)

(đ đ)

∆HDC ∽ ∆HEB(g.g)

\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)

c.Vì H là giao điểm của 2 đường cao CE,BD

H là trực tâm của ∆ABC

AH BC tại F

Xét ∆CIF và ∆CFA có:

: chung

(vì AF BC, FI AC)

∆CIF ∽ ∆CFA (g.g)

Bạn tự vẽ hình nha
10 tháng 7 2019

ai đó giúp mình giải bài này với

10 tháng 7 2019

a

Xét  \(\Delta EBH\) và \(\Delta DHC\) có:

\(\widehat{EHB}=\widehat{DHC}\left(đ.đ\right)\)

\(\widehat{E}=\widehat{D}=90^0\)

\(\Rightarrow\Delta EBH~\Delta DHC\left(g.g\right)\)

b

\(\frac{S_{ABF}}{S_{ACF}}=\frac{\frac{AF\cdot BF}{2}}{\frac{AF\cdot CF}{2}}=\frac{BF}{CF}\)

Tuong tu ta co:

\(\frac{S_{ABD}}{S_{CBD}}=\frac{DA}{DC}\)

\(\frac{S_{BCE}}{S_{ACE}}=\frac{EB}{EA}\)

Nhan ve theo ve ta co dpcm