K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

http://tailieu.metadata.vn/chi-tiet/-/tai-lieu/tuyen-tap-80-bai-toan-hinh-hoc-lop-9-pdf-17121.html

15 tháng 4 2019

bạn tự vẽ hình nhé còn phần chứng minh để tui lo

a) để chứng minh 5 điểm này cùng nằm trên đường tròn thì bạn cần chứng minh 4 điểm A,K,F,E cùng nằm trên 1 đường tròn ( chứng minh tứ giác AKFE nội tiếp theo các cách chứng minh trong SGK toán 9 tập 2 trang 103 phần thứ 15) và bạn chứng minh 4 điểm này theo đúng hình vẽ mà bạn vẽ

sau đó chứng minh nốt K,E,F,H cùng nằm trên 1 đường tròn hoặc các điểm khác như : A,K,H,F ....... tùy hình vẽ (cách chứng minh giống như trên)

sau khi chứng minh đc 2 điều này thì => điều phải chứng minh ở phần a

b) để chứng minh 4 điểm này thẳng hàng thì có rất nhiều cách nhưng  bạn nên chọn cách chứng minh 3 điểm M,H,S hoặc H,S,K , ..... cùng thẳng hàng sau đó => 4 điểm thẳng hàng 

để chứng minh đc thì bạn nên xem hình vẽ và dữ kiện đã chứng minh ở phần a và suy ra những thứ cần thiết để có thể chứng minh đc cho phần b 

bạn có thể chứng minh : ở 3 điểm đó có 3 góc mà khi cộng chúng lại với nhau sẽ bằng 180 độ => 3 điểm thẳng hàng

=> 4 điểm thẳng hàng

đây có thể là cách tốt nhất nhanh nhất mà mình nghĩ ra trong vòng vài phút mong bạn thông cảm thời gian của mình có hạn nên chỉ hướng dẫn đc tới đây ! .................

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)