K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

A B H C

BC = BH + BC = 4 + 5 = 9cm

\(AB=\sqrt{3^3+4^2}=5\left(cm\right)\)

\(AC=\sqrt{3^2+5^2}=\sqrt{34}cm\)

Chu vi tam giác ABC là:

9 + 5 \(+\sqrt{34}=14+\sqrt{34}\left(cm\right)\)

24 tháng 12 2021

Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)

\(\Rightarrow20^2=12^2+HC^2\)

\(\Rightarrow HC^2=20^2-12^2\)

\(\Rightarrow HC^2=400-144=256\)

\(\Rightarrow HC=16\left(cm\right)\)

Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)

\(\Rightarrow AB^2=5^2+12^2\)

\(\Rightarrow AB^2=25+144=169\)

\(\Rightarrow AB=13\left(cm\right)\)

Vậy CV tam giác ABC là

\(20+5+16+13=54\left(cm\right)\)

3 tháng 3 2018

Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)

\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)

\(\Rightarrow AH=\sqrt{12}\approx3\)

Độ dài BC là :3+2=5

Chu vi của tam giác ABC la:\(4+5+5\approx14\)

19 tháng 5 2017

A B H C

Xét \(\Delta\)AHC vuông tại H:

=> AC2 = HA2 + HC2

HC2 = AC2 - HA2

HC2 = 202 - 122 = 256

HC = \(\sqrt{256}\) = 16 (cm)

BC = BH + HC

BC = 5 + 16 = 21 (cm)

Xét \(\Delta\)AHB vuông tại H

=> AB2 = HA2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169

AB = \(\sqrt{169}\) = 13 (cm)

Chu vi của \(\Delta\)ABC là:

AC + CB + BA = 20 + 21 + 13

= 54 (cm)

Vậy chu vi của \(\Delta\)ABC là 54 cm.

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

16 tháng 4 2020

chu vi là 54 cm

13 tháng 3 2020

A B C H

XÉT \(\Delta BAH\)VUÔNG TẠI H

CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)

THAY\(5^2=BH^2+4^2\)

\(\Rightarrow BH^2=5^2-4^2\)

\(\Rightarrow BH^2=25-16\)

\(\Rightarrow BH^2=9\)

\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)

TA CÓ \(BH+HC=BC\)

THAY\(3+12=BC\)

\(BC=15\left(cm\right)\)

XÉT \(\Delta HAC\)VUÔNG TẠI H

CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)

THAY\(AC^2=4^2+12^2\)

\(AC^2=16+144\)

\(AC^2=160\)

\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)

CHU VI \(\Delta ABC\)

\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)

13 tháng 2 2016

Theo gt ta có : AH vuông góc với BC

=> \(\Delta\) AHB và \(\Delta\) AHC là \(\Delta\) vuông

Xét :  \(\Delta\) AHB có : AH\(^2\)+ HB\(^2\) = AB\(^2\)

mà : AH = 12cm, HB = 5cm

=> AB\(^2\)= 12\(^2\)+ 5\(^2\)

=> AB\(^2\)= 144 + 25

=> AB\(^2\)= 169

=> AB = 13 cm (1)

Tương tự ta cũng có :

=> AC\(^2\)= 12\(^2\)+ 16\(^2\)

=> AB\(^2\)= 144 + 256

=> AB\(^2\)= 400

=> AB = 20 cm (2)

Mặt khác : BC = BH + CH

=> BC = 5 + 16 = 21cm (3)

Từ : (1), (2), (3) => chu vi tam giác ABC = 13 + 20 + 21 = 54 cm

 

Bài này dễ mà bạn. Sử dụng định lí Py-ta-go ấy!