Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
\(\Leftrightarrow AC=\sqrt{400}=20cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Leftrightarrow BH=\sqrt{25}=5cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow BC=5+16=21\left(cm\right)\)
Vậy: AB=20cm; BC=21cm
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Tam giác AHC vuông tại H nên : AC^2 = AH^2 + CH^2 = 12^2 + 16^2 = 400
=> AC = 20 (cm)
Tam giác AHB vuông tại H nên : AB^2 = AH^2 + BH^2
=> BH^2 = AB^2 - AH^2 = 13^2 - 12^2 = 25
=> BH = 5 (cm)
=> BC = BH + HC = 5 + 16 = 21 (cm)
Tk mk nha
dễ
AC2=162+122=400=202 =>AC=20 cm
BH2=132-122=25=52 =>BH=5 => BC = 16+5=21 cm
Áp dụng định lý Py-ta-go vào tâm giác AHC,ta có:
AC2 = HC2 + HC2
hay AC2=122 + 162
AC2=144 + 256
AC=20 (vì AC>0)
Áp dụng đinh lý Py-ta-go vào tâm giác vuông ABH, ta được
AB2=AH2+BH2
132=122 + BH2
BH2= 169-144
BH=5
Vậy BC=16+5=21
a: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)
BC=BH+CH=21(cm)
Chu vi tam giác ABC là:
\(C=20+21+13=54\left(cm\right)\)
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
AC^2=AH^2+HC^2(py ta go)
AC^2=144+256=200 cm
suy ra AC=20 cm
AB^2=AH^2+BH^2
BH^2=AB^2-AH^2
BH^2=1169-144=25cm
BH=5cm
Mà BH+HC=BC suy ra 5+16=21
vạy AC=20 cm, BC=21cm
hình tự ve nha]
xét tam giác ABH vuông tại H có:
AB2= AH2+BH2(định lý py- ta-go)
thay số:AB=13cm, AH=12cm, được:
132=122+BH2
169=144+BH2
BH2=169-144
BH2=25
suy ra: BH=5cm
xét tam giác AHC vuông tại H có
AC2=AH2+HC2(dinh ly py ta go)
thay số: tu thay nha
tự tìm như ở câu trên ý
suy ra AC=20cm
có BC =BH+HC=5+16=21cm
chu vi hình tam giác ABC là:
13+21=20=54(cm)
k cho minh nha
thanks
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Ta có :
\(AC^2=AH^2+HC^2\)
\(=>AC=20cm\)
\(BH^2=AB^2-AH^2\)
\(=>BH=5cm\)
\(=>BC=BH+HC=21cm\)