Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOKB vuông tại K và ΔOHC vuông tại H co
góc KOB=góc HOC
=>ΔOKB đồng dạng với ΔOHC
d: góc BKC=góc BHC=90 độ
=>BKHC nộitiếp
=>góc AKH=góc ACB
=>ΔAKH đồng dạng với ΔACB
=>\(\dfrac{S_{AKH}}{S_{ACB}}=\left(\dfrac{AK}{AC}\right)^2=\dfrac{1}{4}\)
=>\(S_{ABC}=32\left(cm^2\right)\)
Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)
A B C H K
Bài làm
a) Xét tam giác ABH và tam giác ACK có:
\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)
\(\widehat{BAC}\) chung
=> Tam giác ABH ~ Tam giác ACK ( g - g )
b)