Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))
AC là đường kính của (O)(gt)
Do đó: ΔAEC vuông tại E(Định lí)
\(\Rightarrow\)AE\(\perp\)EC tại E
\(\Rightarrow\)AE\(\perp\)BE tại E
hay \(\widehat{AEB}=90^0\)
Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)
nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)
Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)
nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)
\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)
b)
Ta có: EA\(\perp\)EB(cmt)
nên \(EA\perp EH\) tại E
Xét ΔEHB có \(EA\perp EH\) tại E(cmt)
nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔEHB vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)
nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)
nên EI=IH=IB
Ta có: IH=IE(cmt)
nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)
hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)
c) Ta có: \(AE\perp EC\) tại E(cmt)
nên \(AE\perp BC\) tại E
Xét (O) có
ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))
AC là đường kính của (O)(gt)
Do đó: ΔADC vuông tại D(Định lí)
\(\Rightarrow CD\perp AD\) tại D
hay \(CD\perp BA\) tại D
Xét ΔBAC có
AE là đường cao ứng với cạnh BC(cmt)
CD là đường cao ứng với cạnh BA(cmt)
AE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
\(\Rightarrow\)BH là đường cao ứng với cạnh AC
hay \(BH\perp AC\)(đpcm)
bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?
a, HS tự chứng minh
b, HS tự chứng minh
c, DAEH vuông nên ta có: KE = KA = 1 2 AH
=> DAKE cân tại K
=> K A E ^ = K E A ^
DEOC cân ở O => O C E ^ = O E C ^
H là trực tâm => AH ^ BC
Có A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0
(K tâm ngoại tiếp) => OE ^ KE
d, HS tự làm
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Ớ thế phần C làm như thế nào