Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)cm tam giác AFC đồng dạng tam giác AEB(gg)
=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm
b) tam giác BDH đồng dạng tam giác BEC (gg)
=> BH/BC =BD/BE hay BH .BE =BD.BC (1)
t^2 CH.CF=DC.BC (2)
lấy (1)+(2) theo vế suy ra đpcm
c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C
t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C
Do đó góc AEF= góc DEC
mà góc AEF+góc FEB=90 ; góc DEC+BED =90
=> góc FEB= góc BED
suy ra đpcm ................... (x-x)
(Hình tự vẽ nhé)
a) xét tam giác FHB và tam giác EHC ta có
góc FHB = góc EHC ( đối đỉnh)
góc BEA= góc CFA = 90 độ
Dó đó tam giác FHB đồng dạng tam giác EHC (gg)
=> HF/EH = HB/HC hay HE.HB=HF.HC
b) ta có tam giác AFC đồng dạng AEB (gg) (A chung; 2 góc vuông)
=>AF/AE=AC/AB hay AF/AB=AE/AC
Xét tam giác AEF và tam giác ABC có
góc A chung
AF/AB=AE/AC
Do đó tam gioác AEF đồng dạng ABC (gg)
=> AEF=ABC
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)