K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

45 60 a x A B C H K

a) Kẻ đường cao BK

 Ta có: 

\(\sin\widehat{A}=\frac{BK}{AB};\cos\widehat{A}=\frac{AK}{AB}\)

=> \(\sin\widehat{A}+\cos\widehat{A}=\frac{BK}{AB}+\frac{AK}{AB}=\frac{AK+BK}{AB}>\frac{AB}{AB}=1\)

b) Kẻ đường cao AH.

Đặt BH = x => HC = a - x.  

+) Tam giác AHB vuông cân => AH = BH =x  (1) 

+) Tam giác AHC có \(\tan\widehat{ACH}=\frac{AH}{HC}\Rightarrow\tan60^o=\frac{AH}{a-x}\Rightarrow AH=\sqrt{3}\left(a-x\right)\) (2)

Từ (1) ; (2) => \(x=\sqrt{3}\left(a-x\right)\Rightarrow x=\frac{\sqrt{3}a}{1+\sqrt{3}}\)

=> \(AH=\frac{\sqrt{3}a}{1+\sqrt{3}}\)

=> \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.\frac{\sqrt{3}a}{1+\sqrt{3}}.a=\frac{3-\sqrt{3}}{4}a^2\)

10 tháng 7 2016

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,       

 
27 tháng 9 2019

Câu hỏi của Ngô Hà Minh - Toán lớp 9 - Học toán với OnlineMath