K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

a, Xét tam giác MDE và tam giác MPQ có 

^M _ chung ; \(\frac{MD}{MP}=\frac{ME}{MQ}=\frac{1}{2}\)

Vậy tam giác MDE ~ tam giác MPQ (c.g.c) 

\(\frac{MD}{MP}=\frac{DE}{PQ}\Rightarrow DE=\frac{MD.PQ}{MP}=10cm\)

23 tháng 3 2016

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

23 tháng 3 2016

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

Bài 2:

b: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

K là trung điểm của GB

I là trung điểm của GC

Do đó: KI là đường trung bình của ΔGBC

Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//KI và NM=KI

Xét tứ giác NMIK có 

NM//KI

NM=KI

Do đó: NMIK là hình bình hành

a: PQ=căn 8^2+15^2=17cm

PA=MP^2/PQ=8^2/17=64/17cm

b: góc MBA=góc MCA=góc CMB=90 độ

=>MBAC là hình chữ nhật

=>MA=BC

a: Xet tứ giác MPNQ có

I là trung điểm chung của MN và PQ

nên MPNQ là hình bình hành

b:M đối xứng K qua PQ

nên MK vuông góc với PQ tại trung điểm của MK

=>H là trung điểm của MK

Xét ΔMKN có MH/MK=MI/MN

nên HI//KN

=>KN vuông góc với KM

c: M đối xứng K qua PQ

nên QM=QK

=>QK=PN

Xét tứ giác PQNK có

PQ//NK

PN=QK

Do đó: PQNK là hình thang cân

4 tháng 12 2021

Vì I,K lần lượt là trung điểm MP và MQ nên IK là đtb tg MPQ

\(\Rightarrow IK=\dfrac{1}{2}PQ=\dfrac{15}{2}\left(cm\right)\)

25 tháng 3 2022

Hình bạn tự vẽ ạ.

a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :

\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)

\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)

Mà \(\widehat{A}:chung\)

\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)

b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)

hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)

\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)