Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(OM\perp PQ\Rightarrow\) M la diem giua cung PQ
=> EM la phan giac goc PEQ
ma EM vuong goc EN ( MN la duong kinh )
=> EN la phan giac ngoai goc PEQ
khi do ta co \(\frac{NS}{NH}=\frac{MS}{MH}\Rightarrow\frac{NS}{MS}=\frac{NH}{MH}\)
suy ra \(\frac{NS}{NS+MS}=\frac{NH}{NH+MH}=\frac{NH}{MN}\Rightarrow NH=\frac{NS.MN}{NS+MS}=const\) (Do M,N S co dinh )
suy ra N co dinh ma O co dinh nen \(OH=const\left(dpcm\right)\)
góc ECM=góc ECA=1/2*sđ cung AC
góc EMC=góc AMI=góc ABC=1/2*sđ cung AC
=>góc ECM=góc EMC
=>ΔEMC cân tại E
A B C D N E M 1 2
Mk chỉ nêu cách làm bạn tự triển khai nha!
CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)
(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))
\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C
\(\Rightarrow AB=CE\)
Từ (*) suy ra:
\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\)
\(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)
Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)
\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)
CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)
\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)
Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)