K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMIN vuông tại I và ΔMQP vuông tại Q có

góc M chung

=>ΔMIN đồng dạng với ΔMQP

c: Xét ΔMQI và ΔMPN có

MQ/MP=MI/MN

góc M chung

=>ΔMQI đồng dạng với ΔMPN

DD
6 tháng 3 2021

a) Xét tam giác \(MKN\)và tam giác \(MSP\)

\(\widehat{M}\)chung

\(\widehat{MKN}=\widehat{MSP}\left(=90^o\right)\)

\(\Rightarrow\Delta MKN\)đồng dạng với \(\Delta MSP\)(g.g)

\(\Rightarrow\frac{MK}{MS}=\frac{MN}{MP}\)

\(\Rightarrow\frac{MK}{MN}=\frac{MS}{MP}\).

Xét tam giác \(MNP\)và tam giác \(MKS\):

\(\widehat{M}\)chung

\(\frac{MK}{MN}=\frac{MS}{MP}\)(cmt)

Suy ra tam giác \(MNP\)đồng dạng với tam giác \(MKS\)(c.g.c).

b), c) Tương tự. 

a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔKNM~ΔMNP

Xét ΔMNP vuông tại M và ΔKMP vuông tại K có

\(\widehat{P}\) chung

Do đó: ΔMNP~ΔKMP

=>ΔKNM~ΔMNP~ΔKMP

b: Ta có: ΔKNM~ΔKMP

=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)

=>\(KM^2=KN\cdot KP\)

c: ta có: NP=NK+KP

=4+9

=13(cm)

Ta có: \(KM^2=KN\cdot KP\)

=>\(KM^2=4\cdot9=36\)

=>\(KM=\sqrt{36}=6\left(cm\right)\)

Xét ΔMNP vuông tại M có MK là đường cao

nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot PN=\dfrac{1}{2}\cdot6\cdot13=39\left(cm^2\right)\)

a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có

góc N chung

=>ΔKNM đồng dạng với ΔMNP

Xét ΔKMP vuông tại K và ΔMNP vuông tại M có

góc P chung

=>ΔKMP đồng dạng với ΔMNP

b: ΔKNM đồng dạng với ΔKMP

=>KN/KM=KM/KP

=>KM^2=KN*KP

c: \(MK=\sqrt{4\cdot9}=6\left(cm\right)\)

\(S_{MNP}=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)

5 tháng 8 2021

cho mik xin câu a b đi bạn

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC