Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
a: IN/IP=MN/MP=3/5
c: NP=căn 10^2-6^2=8cm
NI là phân giác
=>NI/MN=IP/MP
=>NI/3=NP/5=8/8=1
=>NI=3cm
S MNI=1/2*3*6=9cm2
a: Ta có: ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(NP^2=9^2+12^2=225\)
=>\(NP=\sqrt{225}=15\left(cm\right)\)
Xét ΔMNP có MI là phân giác
nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)
=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)
=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)
mà IN+IP=NP=5cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)
=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)
b: Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)
=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)
=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)
=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)
=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)
d) S = 6 x 8 :2 = 24
mà s cũng có thể = MK x 10 : 2 = 24 ( MK là đường cao)
=> MK = 4,8
e) theo py ta go
=> NK = căn 41,24
MK = căn 69,24
g) theo tính chất tam giác vuông
=> MD = ND = DP = 1/2NP = 10 : 2 = 5
h) theo py ta go
=> KD = 5 - căn 41,24 = ...
bài này mik chưa chắc chắn đâu vì mik thấy số lẻ quá nhưng mà 100% cách làm là đúng nhng7 hơi tắt mog bn thông cảm
nhớ
a) tứ giác MEKH co ba góc vuông suy ra là hcn
b)do tam giác MNP có M=900 áp dụng định lý py ta go để làm
c)SMNP =chiều cao nhân cạnh đáy chia hai
d)áp dụng định lý py-ta-go
a: Xét tứ giác MHKE có
\(\widehat{MHK}=\widehat{MEK}=\widehat{HME}=90^0\)
Do đó: MHKE là hình chữ nhật
b: \(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: \(S_{MNP}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
d: \(MK=\dfrac{MN\cdot MP}{NP}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
e: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{6^2}{10}=3.6\left(cm\right)\\KP=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)