Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N M P
(*) Hình ảnh mang tính chất minh họa
Ta có :
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(120^0+\widehat{N}+\widehat{P}=180^0\)
\(\widehat{N}+\widehat{P}=180^0-120^0=60^0\)
\(\Rightarrow\widehat{N}=\widehat{P}=\frac{60^0}{2}=30^0\)
Vậy \(\widehat{N}=\widehat{P}=30^0\)
ta co: goc M +goc N +goc P =180 do
Ma do tam giac mnp can tai M
=> goc N =goc P => goc M + 2 goc N =180 do
=> goc N =goc P =30 do
a. tam giác ABC vg tại A suy ra B+C=90 suy ra B=90-40=50
b. từ đề bài suy ra N+P=180-75=105 và N=P=(N+P)/2=......
Vì \(\Delta MNP.cân.tại.P\Rightarrow\widehat{M}=\widehat{N}=50^o\)
\(\Rightarrow\widehat{P}=180^o-\left(50^o+50^o\right)=80^o\)
Vì \(\Delta\)MNP cân nên \(\stackrel\frown{M}=\stackrel\frown{N}=50^0\\ \Rightarrow P=180^0-\left(50^0+50^0\right)=80^0\)
cho tam giác MNP vuông tại M; biết N=35 độ ; số đo góc P là:
A 45 độ
B 55 độ
C. 65 độ
D 90 độ
\(\)+Tam giác MNP vuông tại M
\(=>\widehat{M}=90^o\)
+Áp dụng định lý tổng ba góc trong tam giác có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(=>\widehat{N}+\widehat{P}=180^o-\widehat{M}\)
\(=>\widehat{P}=180^o-\widehat{M}-\widehat{N}\)
\(=>\widehat{P}=180^o-90^o-35^o=55^o\)
=>Chọn B
xét tam giácABM VÀ TAM GIÁC ACM CÓ
AM CHUNG
GÓC AMB=GÓC AMC
A CHUNG
=>TAM GIÁC ABM=TAM GIÁC ACM
a) Ta có tam giác MNP cân tại M => \(\widehat{N}=\widehat{P}\)
mà \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(=>\widehat{N}+\widehat{P}=180^0-\widehat{M}=180^0-65^0=115^0\)
\(=>\widehat{N}=\widehat{P}=115^0:2=57,5^0\)
b) Ta có \(\widehat{N}=\widehat{P}\left(cmt\right)\)
\(=>\widehat{P}=50^0\)
Mà \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(=>\widehat{M}=180^0-\left(\widehat{N}+\widehat{P}\right)=180^0-\left(50^0+50^0\right)=180^0-100^0=80^0\)