Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xet tam giac ADE va tam giac CDB ta co
AD=DC ( D la trung diem AC)
DE=DB(gt)
goc ADE=goc CDB( 2 goc doi dinh)
--> tam giac ADE=tam giac CDB ( c-g-c)
b) xet tam giac ADB va tam giac CDE ta co
AD=DC ( D la trung diem AC)
DB=DE(gt)
goc ADB = goc CDE ( 2 goc doi dinh)
--> tam giac ADB=tam giac CDE (c-g-c)
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
\(\text{a) Xét }\)\(\Delta ABD\text{ và }\Delta MCD\text{ có :}\)
\(BD=DC\left(gt\right)\)
\(\widehat{ADB}=\widehat{MDC}\left(đ^2\right)\)
\(AD=DM\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta MCB\left(c.g.c\right)\)
\(\Rightarrow AB=MC\)\(\left(\text{hai cạnh tg ứng}\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{BCM}=90^o\)
\(\Rightarrow MC\perp BC\)
\(\text{b) Xét :}\)\(\Delta ABC\perp\text{ tại B}\)
\(\Delta MCB\perp\text{tại C }\)
\(\text{Có :}\)\(AB=MC\left(cmt\right)\)
\(BC:\text{ cạnh chung}\)
\(\Rightarrow\Delta ABC=\Delta MCB\left(Cgv-cgv\right)\)
vội quá nên ẩu , toán hìh lần sau đăng sớm để giải chớ đăng hơi sát giờ tớ giải nhưng gửi ko kịp