K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

A B C M N D K E O

a) Ta thấy: Tứ giác AMDN nội tiếp đường tròn: ^AND + ^AMD = 1800

Mà ^AMD + ^BMD = 1800 nên ^AND=^BMD hay ^CND=^BMD

Tứ giác ABDC nội tiếp đường tròn (O) => ^ABD +  ^ACD = 1800. Mà ^ACD+^NCD=1800

Nên ^ABD=^NCD hay ^MBD=^NCD

Xét \(\Delta\)MBD và \(\Delta\)NCD: ^BMD=^CND; BM=CN; ^MBD=^NCD => \(\Delta\)MBD=\(\Delta\)NCD  (g.c.g)

=> BD=CD (2 cạnh tương ứng) => D là điểm chính giữa của cung BC

Mà cung BC cố định => D là 1 điểm cố định (đpcm). 

b) Xét đường tròn (O) có dây cung BC ; \(\Delta\)ABC đều nội tiếp (O); D là điểm chính giữa cung BC

=> 3 điểm A;O;D thẳng hàng => ^ABD=^ACD=900 hay ^MBD=900

Do \(\Delta\)BDC cân đỉnh D => ^DBC= (180- ^CBD)/2 (1)

\(\Delta\)MBD=\(\Delta\)NCD (cmt) => ^BDM=^CDN => ^BDM+^MDC=^CDN+^MDC => ^BDC=^MDN (2)

Ta cũng có: MD=ND => \(\Delta\)MDN cân tại D => ^DMN= (180- ^MDN)/2 (3)

Từ (1);(2) và (3) => ^DBC=^DMN hay ^DBK=^DMK => Tứ giác BMKD nội tiếp đường tròn.

=> ^MBD+^MKD=1800. Mà ^MBD=900 => ^MKD=900 => DK vuông góc MN (đpcm).

c) Xét TH điểm M trùng với điểm B. Khi đó điểm N sẽ trùng với điểm C (Do BM=CN)

=> SAMN = SABC (*)

Xét TH điểm M khoog trùng điểm B

Qua điểm M kẻ 1 đường thẳng song song với AC cắt BC tại E.

Vì \(\Delta\)ABC đều => \(\Delta\)MBE là tam giác đều => BM=EM.

Lại có: BM=CN => EM=CN

Xét \(\Delta\)MEK và \(\Delta\)NCK: ^EMK=^CNK; ^MEK=^NCK (So le trong); EM=CN

=> \(\Delta\)MEK=\(\Delta\)NCK (g.c.g) => SMEK = SNCK 

=> SAMN = SAMKC + SNCK = SAMKC + SMEK = SAMEC.

Mà SAMEC < SABC => SAMN < SABC (**)

Từ (*) và (**) => SAMN \(\le\)SABC => Max SAMN = SABC 

Dấu "=" xảy ra khi điểm M trùng với điểm B.

15 tháng 5 2021

85axfHu.png

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

14 tháng 2 2017

Tự vẽ hình:

a) ta có: Nx là tiếp tuyến => \(\widehat{PNO}=90\)

d\(⊥\)AB=> \(\widehat{OMP}=90\)

=> tứ giác OMNP nội tiếp

b) Ta có: CO II MP ( cùng vuông góc với AB)

Tứ giác OMNP nội tiếp => \(\widehat{OPM}=\widehat{ONM}\) (1)

 Tam giác cân OCN ( OC=ON=R) có: \(\widehat{OCN}=\widehat{ONM}\) (2)

Từ (1), (2) => \(\widehat{OPM}=\widehat{OCM}\)(**)

Từ (*), (**) => OCMP là hình bình hành

c) Xét \(\Delta OCN\)là tam giác cân

và \(\Delta MCD\)là tam giác cân ( do C,D đối xứng nhau qua AB) có chung góc C

=> \(\Delta OCN\)đồng dạng \(\Delta MCD\)

=>\(\frac{CN}{CD}=\frac{OC}{CM}\Rightarrow CN.CM=OC.CD=2R^2=const\)

Vậy CN.CM không đổi (ĐPCM)