K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Hãy giúp mình với các bạn ơi mình cần gấp lắm

                   Cảm ơn trước nhévui

14 tháng 8 2016

Bạn tự vẽ hình :)

Gọi O là giao điểm của BN và CM . Đặt ON = x , OM = y

Ta có : AB2 = 4MB2=4.(4x2+y2)

AC2=4.NC2=4.(x2+4y2)

\(\Rightarrow AB^2+AC^2=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5BC^2\)

15 tháng 8 2016

làm sao đoạn đầu ra đc 4x^2.

31 tháng 10 2016

Bạn xem lại đề nhé!

Đặt góc BDC = y , góc ADB = x thì góc DBC = 2x , góc ABD = 2y

Ta có : Góc ABC = góc ABD + góc DBC = 2x+2y = 2(x+y) = 2*góc ADC

Trong tam giác ABC : góc BAC = góc BCA = (180 độ - 2x-2y)/2 = 90 độ -x -y

Trong tam giác BCD : góc BCD = 180 độ - 2x -y

=> góc ACD = góc BCD - góc BCA = (180 độ -2x-y) - (90 độ -x -y) = 90 độ -x

Tương tự với tam giác ABD có góc CAD = (180 độ -2y-x)-(90 độ -x-y)

= 90 độ - y

Ta chưa có điều kiện x = y do vậy góc ACD khác góc CAD nên đề sai.

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD