Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=2\cdot CM=5\sqrt{3}\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=5\sqrt{3}\)
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
1.
Gọi M là trung điểm BC thì theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\Rightarrow x+y=\dfrac{2}{3}\)
2.
\(CH=\dfrac{1}{2}BC=\dfrac{a}{2}\)
\(T=\left|\text{ }\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)
\(\Rightarrow T^2=CA^2+CH^2+2\overrightarrow{CA}.\overrightarrow{CH}=a^2+\left(\dfrac{a}{2}\right)^2+2.a.\dfrac{a}{2}.cos60^0=\dfrac{7a^2}{4}\)
\(\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)
3.
\(10< x< 100\Rightarrow10< 3k< 100\)
\(\Rightarrow\dfrac{10}{3}< k< \dfrac{100}{3}\Rightarrow4\le k\le33\)
\(\Rightarrow\sum x=3\left(4+5+...+33\right)=1665\)
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4