K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

- Áp dụng định lý pitago vào tam giác DEF vuông tại D :

\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI

\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )

Vậy ...

3 tháng 7 2021

pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)

áp dụng hệ thức lượng

\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)

\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)

\(=>FI=45-16,2=28,8cm\)

 

22 tháng 10 2021

\(\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\Leftrightarrow DF=\dfrac{4}{5}EF\)

\(\Leftrightarrow DF=24\left(cm\right)\)

\(\Leftrightarrow FE=30\left(cm\right)\)

\(\Leftrightarrow DI=14.4\left(cm\right)\)

NV
21 tháng 9 2021

Áp dụng hệ thức lượng:

\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Leftrightarrow DI=\dfrac{DE.DF}{\sqrt{DE^2+DF^2}}=\dfrac{3.4}{\sqrt{3^2+4^2}}=2,4\)

15 tháng 9 2017

a, Áp dụng đ.lí Pytago vào tam giác DEF vuông tại D có:

\(DE^2+DF^2=EF^2\)

thay số:\(15^2+20^2=EF^2\)

\(\Rightarrow EF^2=625\)

\(\Rightarrow EF=\sqrt{625}=25\left(cm\right)\)

Áp dụng HTL vào tam giác DEF vuông tại D có

DE.DF=EF.D

I\(\Rightarrow15.20=25.EF\)

\(\Rightarrow EF=\frac{15.20}{25}=12\left(cm\right)\)

b, Làm tương tự như trên dc DI

22 tháng 10 2021

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

DH=15(cm)

\(OH=3\sqrt{15}\left(cm\right)\)

\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

21 tháng 9 2023

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

22 tháng 10 2021

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

\(DH=15\left(cm\right)\)

\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

\(OH=3\sqrt{15}\left(cm\right)\)

16 tháng 9 2023

Xét ΔDEH vuông tại D có đg cao DH

\(FE=HE+HF=1+4=5cm\\ DE^2=EH.FE\\ \Leftrightarrow DE^2=1.5\\ \Leftrightarrow DE=\sqrt{5}cm\\ DF^2=FE^2-DE^2\\ \Leftrightarrow DF^2=5^2-\sqrt{5}^2\\ \Leftrightarrow DF^2=20\\ \Leftrightarrow DF=\sqrt{20}=2\sqrt{5}cm\)

16 tháng 9 2023

\(EF=EH+FH=1+4=5\left(cm\right)\) 

Xét tam giác DEF vuông tại D có đường cao DH ta có: 

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{EH\cdot EF}=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\\DF=\sqrt{FH\cdot EF}=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)