Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đương nhiên ( áp dụng hệ thức lượng trong tam giác vuông )
b) \(\text{EF}=\sqrt{DE^2+DF^2}=\sqrt{12^2+16^2}=20\) (cm )
ta có DE^2 = EH . EF => EH = DE^2/ EF = 12^2 / 20 = 7.2 ( cm )
DH = DE.DF / EF = 9,6 ( cm )
Xét ΔDEH vuông tại D có đg cao DH
\(FE=HE+HF=1+4=5cm\\ DE^2=EH.FE\\ \Leftrightarrow DE^2=1.5\\ \Leftrightarrow DE=\sqrt{5}cm\\ DF^2=FE^2-DE^2\\ \Leftrightarrow DF^2=5^2-\sqrt{5}^2\\ \Leftrightarrow DF^2=20\\ \Leftrightarrow DF=\sqrt{20}=2\sqrt{5}cm\)
\(EF=EH+FH=1+4=5\left(cm\right)\)
Xét tam giác DEF vuông tại D có đường cao DH ta có:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{EH\cdot EF}=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\\DF=\sqrt{FH\cdot EF}=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét tam giác DEF vuông tại D, đường cao DH
* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm
-> HF = EF - EH = 10 - 3,6 = 6,4 cm
* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)
Cho tam giác DEF vuông tại D , đường cao DH , biết DE=6cm EH bằng 3.6cm , tính HF , DF - Hoc24
bạn kham khảo link, mình làm nãy rồi nhé
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)