Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài AG lấy E sao cho AG=GE
\(2\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}=\overrightarrow{GE}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AB}\)
\(\overrightarrow{GI}=\overrightarrow{IA}\Rightarrow6\overrightarrow{GI}=3\overrightarrow{GA}\)
\(\overrightarrow{AB}+\overrightarrow{AC}+3\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}=\overrightarrow{GE}+\overrightarrow{GA}=\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{0}\)
G là trung điểm BD \(\Rightarrow\overrightarrow{BG}=\overrightarrow{GD}\)
Gọi M là trung điểm BC \(\Rightarrow\) GM là đường trung bình tam giác BCD
\(\Rightarrow\overrightarrow{GM}=\frac{1}{2}\overrightarrow{DC}\Rightarrow\overrightarrow{DC}=\overrightarrow{AG}\)
\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{DG}=\overrightarrow{AG}+\overrightarrow{DA}+\overrightarrow{AG}=2\overrightarrow{AG}-\overrightarrow{AD}=2\overrightarrow{a}-\overrightarrow{b}\)
\(\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AD}+\overrightarrow{AG}=\overrightarrow{a}+\overrightarrow{b}\)
A B C M G H
\(\text{a) }\overrightarrow{AH}=\overrightarrow{AG}+\overrightarrow{GH}=\overrightarrow{AG}+\overrightarrow{BG}=\frac{1}{3}\left(3\overrightarrow{AG}+3\overrightarrow{BG}\right)\\ =\frac{1}{3}\left(\overrightarrow{AA}+\overrightarrow{AC}+\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB}\right)\\ =\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{AC}\right)\\ =\frac{1}{3}\left(2\overrightarrow{AC}-\overrightarrow{AB}\right)=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\text{b) }\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}=-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\)
\(\text{c) }\overrightarrow{MH}=\overrightarrow{MC}+\overrightarrow{CH}=\frac{1}{2}\overrightarrow{BC}-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AB}\)
khong co de bai sao lam dc
- bạn này ngáo cmnr