K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

A B C D E O M N

a)

Chứng minh

\(\Delta COE=\Delta AOE\left(c.g.c\right)\)

\(\Rightarrow OC=OA\)(hai cạnh tương ứng)           \(\left(1\right)\)

\(\Delta BOD=\Delta AOD\left(c.g.c\right)\)

\(\Rightarrow OB=OA\)(hai cạnh tương ứng)            \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(OB=OC\)

1 tháng 9 2016

ko biet dau

28 tháng 3 2019

Teo  éo hiểu pạn nói gì hết

éo hiểu nên éo giải

k cho phát

a: Xét ΔAOM và ΔBOM có

OM chung

MA=MB

OA=OB

=>ΔAOM=ΔBOM

Xét ΔAON và ΔCON có

OA=OC

ON chung

NA=NC

=>ΔAON=ΔCON

b: ΔAOM=ΔBOM

=>góc OAM=góc OBM

ΔAON=ΔCON

=>góc OAN=góc OCN

OA=OB

OA=OC

=>OB=OC

=>góc OBN=góc OCM

=>góc OAM=góc OAN

=>AO là phân giác của góc MAN

14 tháng 12 2017

Theo bài 8.3 ta đã có\(\widehat{A_1} =\widehat{B}_1;\widehat{A_2}=\widehat{C_1} \) (1)

Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra \(\widehat{OAB}=\widehat{OBA},\widehat{OAC}=\widehat{OCA},\widehat{OCB}=\widehat{OBC}\)Kết hợp với (1) \(\widehat{OBM}=\widehat{OAM},\widehat{OCN}=\widehat{OAN}\) hay\(\widehat{OAM}=\widehat{OBC}=\widehat{OCB}=\widehat{OAN}\) . Vậy OA là tia phân giác góc MAN.

17 tháng 12 2017

Hình thì bạn kia vẽ rồi nên mình không vẽ nữa nha

Theo bài 8.3 ta đã cóˆA1=ˆB1;ˆA2=ˆC1A1^=B^1;A2^=C1^ (1)

Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ˆOAB=ˆOBA,ˆOAC=ˆOCA,ˆOCB=ˆOBCOAB^=OBA^,OAC^=OCA^,OCB^=OBC^Kết hợp với (1) ˆOBM=ˆOAM,ˆOCN=ˆOANOBM^=OAM^,OCN^=OAN^ hayˆOAM=ˆOBC=ˆOCB=ˆOANOAM^=OBC^=OCB^=OAN^ . Vậy OA là tia phân giác góc MAN.