K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2023

a. vì tam giác DEF cân => DE=DF=>1/2DE=1/2DF=>DM=DN

Xét 2 tam giác DEM và tam giác DFNcó

DE=DF(gt)

góc D chung

DM=DN (cmt)

=>tam giác DEM = tam giác DFN(c,g,c)

=> EM=FN(cạnh tương ứng)

b. Vì góc DEM=góc DFN (cmt)

góc DEF =góc DEF (suy từ giả thuyết)

=>DEF - DEM = DFE - DFN => KEF = KFE

=> tam giác KEF cân

=> KE=KF

c. xét 2 tam giác : tam giác DKE và tam giácDKF

DE=DF (gt)

DK chung

KE=KF (cmt)

tam giác DKE =tam giác DKF (c.c.c)

=> góc EDK = góc FDK

kéo dài DK và và két EF tại H'

xét 2 tam giác tam giác DH'Evà tam giác DH'F

DE=DF

EDH'=FDH'

DH' chung

=> tam giác DH'E= tam giác DH'F

=>H'E =H'F(c.t.ư)

=> H và H' trùng nhau

=>Dk đi qua H

21 tháng 3 2022

a, Ta có: DH là đường cao trong tam giác cân DEF

⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF

⇒HE=HF 

Ta có: HE=HF=EF/2=8/2=4 (cm)

Xét ΔDHE vuông tại H

Theo định lý Pi-ta-go, ta có:

DF²=DH²+HF²

⇒DH²=DF²-HF²

⇒DH²=5²-4²

⇒DH²=9

⇒DH=√9=3 (cm)

b, Xét ΔDME và ΔDNF có:

DM=DN (GT)

A là góc chung

DE=DF (GT)

⇒ ΔDME=ΔDNF (c.g.c)

⇒EM=FN (2 cạnh tương ứng)

    DEM=DFN (2 góc tương ứng)

c, Ta có: E=F (GT)

và DEM=DFN (cmt)

⇒KEF=KFE 

⇒ΔKEF cân tại K

⇒KE=KF

d, Ta có: DH⊥EF và HE=HF

⇒DH là đường trung trực của EF

mà KE=KF

⇒K là điểm thuộc đường trung trực DH

⇒D, K, H thẳng hàng

21 tháng 3 2022

cảm ơn bạn

1: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HE=HF

EF=8cm

nên HE=4cm

=>DH=3cm

2: Xét ΔDEM và ΔDFN có 

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: EM=FN

3: Xét ΔNEF và ΔMFE có 

NE=MF

\(\widehat{NEF}=\widehat{MFE}\)

FE chung

Do đó:ΔNEF=ΔMFE

Suy ra: \(\widehat{KFE}=\widehat{KEF}\)

=>ΔKEF cân tại K

hay KE=KF

4: Ta có: DE=DF

nên D nằm trên đường trung trực của EF(1)

ta có: KE=KF

nên K nằm trên đường trung trực của EF(2)

ta có: HE=HF

nên H nằm trên đường trung trực của EF(3)

Từ (1), (2) và (3) suy ra D,K,H thẳng hàng

3 tháng 3 2018

D E F N M I

a)   XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)

       ^D CHUNG 

         DM=DN                        \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=>  ^DEM=^DEN

         DF=DE

b)   VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE  \(\Rightarrow\Delta IEF\)CÂN

c)    TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)

      TA  LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)

     TỪ (1) VÀ (2) => ^DMN=^DFE 

     MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!