K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

moi hok lop 6

a: Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/15=CD/10

=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3

=>AD=9cm; CD=6cm

b: BE vuông góc BD

=>BE là phân giác góc ngoài tại B

=>EC/EA=BC/BA

=>EC/(EC+15)=10/15=2/3

=>3EC=2EC+30

=>EC=30cm

8 tháng 3 2022

a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)

b, Ta có BD là pg, mà BD vuông BE 

nên BE là pg ngoài tam giác ABC 

\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)

 

a: Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/15=CD/10

=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3

=>AD=9cm; CD=6cm

b: BE vuông góc BD

=>BE là phân giác góc ngoài tại B

=>EC/EA=BC/BA

=>EC/(EC+15)=10/15=2/3

=>3EC=2EC+30

=>EC=30cm

5 tháng 5 2017

a) Theo đề bài ta có:

\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)

=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)

DC = AC - AD = 15 - 9 = 6 (cm)

Vậy AD = 9cm; DC = 6cm.

b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.

Áp dụng tính chất đường phân giác của góc ngoài ta có:

\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)

hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)

=> EC = 30 (cm)

Vậy EC = 30cm.

10 tháng 1 2017

Vì BE ⊥ BD nên BE là đường phân giác góc ngoài tại đỉnh B

Suy ra : Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ( t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ EC.BA= BC (EC + AC)

Suy ra: EC.BA - EC.BC = BC.AC ⇒EC (BA - BC) = BC.AC

Vậy Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

25 tháng 3 2020

a) 

Vì BD là đường phân giác của \(\widehat{ABC}\) nên:

\(\frac{AD}{DC}=\frac{AB}{BC}\)(tính chất đường phân giác )

\(\Rightarrow\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\)hay \(\frac{AD}{AC}=\frac{AB}{AB+BC}\)

Mà \(\Delta\)ABC cân tại A nên AC=AB=15cm

\(\Rightarrow\frac{AD}{15}=\frac{15}{15+10}\Rightarrow AD=\frac{15\cdot15}{25}=9\left(cm\right)\)

Vậy DC = AC – AD = 15 – 9 = 6 (cm)