Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔABC cân tại A suy ra
Ta lại có :
- ΔABM và ΔACN có
AB = AC (Do ΔABC cân tại A).
BM = CN(gt)
⇒ ΔABM = ΔACN (c.g.c)
⇒ AM = AN (hai góc tương ứng) ⇒ ΔAMN cân tại A.
b) Hai tam giác vuông BHM và CKN có
BM = CN (gt)
⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
c) Theo câu b ta có ΔBHM = ΔCKN ⇒HM = KN (hai góc tương ứng)
Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.
d) ΔBHM = ΔCKN
Vậy tam giác OBC là tam giác cân tại O.
e) Khi góc BAC = 60º và BM = CN = BC
Tam giác cân ABC có góc BAC = 60º nên là tam giác đều
⇒ AB = BC và góc B1 = 60º
Ta có: AB = CB, BC = BM (gt) ⇒ AB = BM ⇒ ΔABM cân ở B ⇒
Mà theo tính chất góc ngoài trong ΔBAM thì
Tương tự ta có
Tam giác cân OBC có góc B3=60º nên ΔOBC là tam giác đều.
a) tam giác ABC cân
=> góc ABC=góc ACB
góc MBA+góc ABC=180độ (kề bù)
góc NCA+góc ACB=180độ(kề bù)
=> góc ABM=góc ACN
xét 2 tam giác ABM và ACN có:
AB=AC(tam giác ABC cân )
góc ABM=góc ACN(chứng minh trên)
BM=CN(gt)
=> 2 tam giác ABM=ACN(c.g.c)
=> AM=AN(2 cạnh tương ứng)
=> tam giác AMN cân ở A
b) tam giác AMN cân ở A
=> góc M=góc N
xét 2 tam giác MHB và NKC có:
góc MHB=góc NKC(=90độ)
MB=NC(gt)
góc M =góc N(chứng minh trên)
=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)
=> BH=CK(2 cạnh tương ứng)
c) ta có : AM=AN (theo a)
HM=KN (tam giác MHB=tam giác NKC)
AM = AH+HM
AN= AK+ KN
=> AH= AK
d) tam giác MHB=tam giác NKC(theo b)
=> góc HBM=góc KCN(2 góc tương ứng)
góc HBM=góc OBC(đối đỉnh)
góc KCN=góc OCB(đối đỉnh)
=> góc OBC=góc OCB
=> tam giác OBC cân ở O
e) tam giác ABC có AB=AC ; góc BAC=60độ
=> tam giác ABC đều
=> AB=AC=BC
mà BC=BM(gt)
=> BM=AB
=>tam giác ABM cân ở B
góc ABC + góc ABM=180độ (kề bù)
=> góc ABM =180độ - góc ABC
=180độ-60độ
=120độ
tam giác ABC cân ở B
=> góc BAM=góc BMA =(180độ-góc ABM) / 2=1800−12002=6002=3001800−12002=6002=300
vậy góc AMN=30độ
tên các điểm bn tự đặt nha
a) ta có CK // HB ( do cùng vuông góc với AC)
CH// BK (do cùng vuông góc với AB)
tứ giác BKCH có CK // HB ,CH// BK => BKCH là hbh
b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)
A+K = 90
K= 30
c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK
d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM
tam giác AKH có AH//OM, KM=MH =>AO=OK (1)
từ O kẻ OS sao cho SA=SB
tam giác AKB có SA=SB, AO=OK => OS//BK
lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC
=> OA=OB=OC(2)
từ 1 và 2 => OA=OB=OC=OK
a: \(\widehat{ACD}+\widehat{ACB}=90^0\)
\(\widehat{ADC}+\widehat{B}=90^0\)
mà \(\widehat{ACB}=\widehat{B}\)
nên \(\widehat{ACD}=\widehat{ADC}\)
hay ΔADC cân tại A
b: Xét ΔBFD có
FA là đường cao
FA là đường trung tuyến
Do đó: ΔBFD cân tại F
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Ad olm hay ai đó giỏi toán giúp với
a,xét tam giác AMB và ANC có:MB=CN(gt)
tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)
=>tam giác AMB =tam giác ANC(c-g-c)
=>tam giác ABC cân tại A
b,tam giác AMB=tam giác ANC(cm trên)
góc ABM=góc ACN
góc ABM+góc MBH=180°
góc ACN +góc NCK=180°
=>góc MBH=góc NCK
xét tam giác MBH và NCK có MB=CN(gt)
góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)
=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)
c, tam giác MBH= tam giác NCK (cm câu b)
=>góc BMH= góc CNK
=> tam giác MNO cân tại O
#Thiên#