Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng vơi ΔBAC
b: Xet ΔCAB co FD//AB
nên DB/DC=FA/FC
a: Xét tứ giác AFCD có
E là trung điểm chung của AC và FD
=>AFCD là hình bình hành
b: EG//AB
AB\(\perp\)AC
Do đó: EG\(\perp\)AC
c:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
a) Xét Δ ABD và Δ ACE ta có :
AB=AC (đề bài)
Góc A chung
Góc AEC = Góc ABD (BD \(\perp\) AC và CE \(\perp\) AB)
⇒ Δ ABD = Δ ACE (góc, cạnh,góc)
b) Ta có : Δ ABD = Δ ACE (cmt)
⇒ AE=AD
⇒ Δ AED cân tại A
d) vì BD \(\perp\) AC và CE \(\perp\) AB
⇒ Δ ECB và Δ DKC là 2 Δ vuông tại E và D (1)
Ta lại có :BD=EC (Δ ABD = Δ ACE)
mà BD=DK (đề bài)
⇒ EC=DK (2)
AB=AC (Δ ABC cân tại A)
mà AE=AD (cmt) và BE=AB-AE; CD=AC-AD
⇒ CD=BE (3)
Từ (1). (2), (3) ⇒ Δ ECB = Δ DKC (cạnh, góc, cạnh)
Câu c không thấy điểm H đề bài cho bạn xem lại
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔaCE
b: ΔABD=ΔACE
=>AD=AE
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
=>ΔADH=ΔAEH
=>HD=HE
mà AD=AE
nên AH là trung trực của ED
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
CA=CE
=>ΔCAD=ΔCED
=>CA=CE và DA=DE
=>CD là trung trực của AE
=>CD vuông góc AE
b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=EB
=>ΔDAF=ΔDEB
=>góc ADF=góc EDB
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Xét tứ giác BCDE có
A là trung điểm chung của BD và CE
=>BCDE là hình bình hành
=>BC//DE và BC=DE
=>CP//EQ
Xét tứ giác CPEQ có
CP//EQ
CP=EQ
=>CPEQ là hình bình hành
=>CE cắt PQ tại trung điểm của mỗi đường
=>P,A,Q thẳng hàng
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔADM có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔADM cân tại A
=>AD=AM
ΔADM cân tại A
mà AE là đường cao
nên AE là phân giác của \(\widehat{DAM}\left(1\right)\)
Xét ΔADN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔADN cân tại A
=>AD=AN
ΔADN cân tại A
mà AF là đường cao
nên AF là phân giác của \(\widehat{DAN}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\left(\widehat{EAD}+\widehat{FAD}\right)\)
\(=2\cdot\widehat{FAE}=2\cdot90^0=180^0\)
=>M,A,N thẳng hàng(3)
AM=AD
AN=AD
Do đó: AM=AN(4)
Từ (3) và (4) suy ra A là trung điểm của MN
c: Xét ΔADB và ΔAMB có
AD=AM
\(\widehat{DAB}=\widehat{MAB}\)
AB chung
Do đó: ΔADB=ΔAMB
=>\(\widehat{AMB}=\widehat{ADB}=90^0\)
=>BM\(\perp\)MN(5)
Xét ΔADC và ΔANC có
AD=AN
\(\widehat{DAC}=\widehat{NAC}\)
AC chung
Do đó: ΔADC=ΔANC
=>\(\widehat{ANC}=\widehat{ADC}=90^0\)
=>CN\(\perp\)NM(6)
Từ (5) và (6) suy ra BM//CN
Xét tứ giác BMNC có
BM//CN
BM\(\perp\)MN
Do đó: BMNC là hình thang vuông