Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)
DA=DB( GT)
góc EDB=góc MDA ( góc đối đỉnh)
vậy tam giác MDA = tam giác EDB( C-G-C)
suy ra : DE=MA( hai canh tương ứng)
chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA
suy ra : MB=AE( hai canh tương ứng)
mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB
vậy : MA=MB=AE=BE
suy ra : tứ giác AEBM là hình thoy
B) Xét tứ giác CMEA có :
MB song song với AE và bằng MB =AE ( theo phần a)
mà ta lại có : MC = MB
vậy AE song song với MC
AE=MC( chứng minh trên)
vậy tứ giác CMEA là HBH
Mà I lại là trung điểm của đường chéo AM
vậy I cũng là trung điểm của đường chéo CE
suy ra : C,i.E thẳng hàng
C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông
bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ
mà BA lại là đường phân giác của góc MBE ( theo phần a tứ giác AEMB là hình thoi)
nên góc MBE =45*2=90độ
mà phần a ta lại có tứ giác AMBE là hình thoi
vậy tứ giác AMBE là hình vuông
mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^
câu a) bn ấy lm hơi dài nên mk có cách khác
c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)
mà có AB vuông góc EM (t/c đối xứng)
vậy AEBM là hình thoi
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a) Tứ giác ACDE có:
AM = CM
DM = ME
=> ACDE là hình bình hành
Mà ADC = 90°
=> ACDE là hình chữ nhật
b) Vì ∆ABC cân tại A
AD là đường cao => AD là trung trực ∆ABC
=> BD = CD
∆ABC có AM = CM
DC = BD
=> MD là đường trung bình
=> DM//AC
=> ABDM là hình thang
c) Để hình chữ nhật ADCE là hình vuông thì AD = DC
=> ∆ADC vuông cân tại D
=> DAC = 46°
=> BAC = 90°
=> Để ADCE là hình vuông thì ∆ABC vuông tại A
A E O F B M C N
a) Do tam giác ABC cân tại A có AM là trung tuyến nên AM là đường cao.
Xét tam giác vuông ABM có ME là trung tuyến ứng với cạnh huyền nên \(EA=EM\)
Tương tự FM = FA
Lại có tam giác ABC cân tại A nên AB = AC hay AE = AF. Suy ra AE = EM = MF = FA hay AEMF là hình thoi.
b) Xét tứ giác AMBN có EA = EB; EM = EN nên AMBN là hình bình hành.
Lại có \(\widehat{AMB}=90^o\Rightarrow\) AMBN là hình chữ nhật.
Xét tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình của tam giác.
Hay EF // BC
Vậy BEFC là hình thang. Lại có \(\widehat{EBC}=\widehat{FCB}\) nên BEFC là hình thang cân.
c) Do AMBN là hình chữ nhật nên NA song song và bằng BM. Suy ra NA cũng song song và bằng MC.
Xét tam giác ANMC có AN song song và bằng MC nên NACM là hình bình hành.
Vậy AM và NC cắt nhau tại trung điểm mỗi đường. Do O là trung điểm AM nên O là trung điểm NC.
d) Tứ giác AEMF là hình thoi. Để nó là hình vuông thì \(\widehat{EAF}=90^o\) hay tam giác ABC vuông cân tại A.
a)Vì E là trung điểm AC suy ra AE=EC
Vì K đối xứng M qua E suy ra EM=EK
từ 2đk trên suy ra từ giác AKCM là hình bình hành
b)từ ý a suy ra AK//BC và AK=MC mà MC=BM suy ra BM=AK
tứ giác AKMB có AK//BM và AK=BM suy ra AKMB là hình bình hành
ta có AD=DM nên DB=DK hay B,D,K thẳng hàng