K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

B1:

a)  Xét ΔABM và  ΔCDM có:a)  Xét ΔABM và  ΔCDM có:
AM = MC (vì M là trung điểm của AC)AM = MC (vì M là trung điểm của AC)
BM = MD (theo giả thiết - cách vẽ)BM = MD (theo giả thiết - cách vẽ)
Góc AMB = góc CMD ( đối đỉnh)Góc AMB = góc CMD ( đối đỉnh)
⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng

b) ⇒ góc ABM = góc MDCb) ⇒ góc ABM = góc MDC
Mà 2 góc này ở vị trí so le trongMà 2 góc này ở vị trí so le trong
⇒ AB // CD (ĐPCM)⇒ AB // CD (ĐPCM)

c) Theo bài ra ta có:c) Theo bài ra ta có:
CD = CNCD = CN
Mà CD = AB ( vì ΔABM = ΔCDM)Mà CD = AB ( vì ΔABM = ΔCDM)
⇒ AB = CN⇒ AB = CN
Xét tam giác ABC và tam giác CNB có:Xét tam giác ABC và tam giác CNB có:
BC chungBC chung
AB = CN (CMT)AB = CN (CMT)
góc ABC = góc NCB ( vì AB // CN )góc ABC = góc NCB ( vì AB // CN )
⇒ ΔABC = ΔNCB⇒ ΔABC = ΔNCB
⇒ AC // BN ( 2 cạnh tương ứng)

b: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

7 tháng 4 2016

a/xét ABM=CDM(c-g-c)
 ABMˆ=CDMˆ
b/Tứ giác ABCD là hình bình hành vì 2 dg chéo cắt nhau tại trung điểm mỗi dg  AB//CD
c/MC là dg TBinh của tam giác DBN  AC//BN

12 tháng 10 2019

A B C M N D / / x x

Xét △AMD và △CMB

Có: AM = MC (M là trung điểm)

     AMD = CMB (2 góc đối đỉnh)

       MD = MB (gt)

=> △AMD = △CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b, Xét △ABM và △CDM

 Có: AM = MC (gt)

     BMA = CMD (2 góc đối đỉnh)

      MB = MD (gt)

=> △ABM = △CDM (c.g.c)

=> BAM = DCM (2 góc tương ứng)

Mà BAM = 90o

=> DCM = 90o

=> AC ⊥ CD

c, Vì BN // AC (gt)

=> BNC = ACD (2 góc đồng vị)

Mà ACD = 90o (câu b)

=> BNC = 90o

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM

Xét △ABM vuông tại A và △CNM vuông tại C

Có: AM = MC (gt)

      BM = MN (cmt)

=> △ABM = △CNM (ch-cgv)

3 tháng 1 2023

lấy điểm m sao cho bé =md là sao 

 

a: Xét ΔMAB và ΔMCD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔMAB=ΔMCD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

=>AB//CN và AB=CN

=>ABNC là hình bình hành

=>BN//AC

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: ta có: ABCD là hình bình hành

nên CD//AB

hay CD\(\perp\)AC

c: Xét tứ giác ABNC có 

AB//NC

NB//AC

Do đó: ABNC là hình bình hành

SUy ra: CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

2 tháng 12 2018

a)

Xét: Tam giác ABM và tam giác CDM

Ta có : AM = MC(Vì M là trung điểm của AC)

            M1=M3(đđ)

            MD=MB(gt)

=> Tam giác ABM = Tam giác CDM.( c - g - c )

b)

Xét: Tam giác BMC và Tam giac DMA

 Ta có:  BM =DM

              M2 = M4(đđ)

              MA=MC(cmt)

=> Tam giác BMC = Tam giác DMA ( c - g - c )

 =>  góc MBC = góc MDA( hai góc tương ứng )

Mà góc MBC  và góc MDA ở vị trí so le trong 

=> AD//BC.