Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ :
B A C D E 1 2
giải :
a, xét \(\Delta ABC\) và \(\Delta EBD\)có :
AB = EB ( do BC = 2AB )
\(\widehat{B_1}=\widehat{B_2}\) ( gt )
BD cạnh chung
\(\Rightarrow\Delta ABC=\Delta EBD\left(c.g.c\right)\)
do đó \(\widehat{ADB}=\widehat{EDB}\)
=> DB là tia phân giác của \(\widehat{ADE}\)
b, xét tam giác ABD và tam giác EBD có :
AB = EB ( gt )
\(\widehat{B_1}=\widehat{B_2}\)
BD cạnh chung
=> tam giác ABD = tam giác EBD ( c.g.c )
=> \(\widehat{DEB}=\widehat{DAB}=90^0\) Mà \(\widehat{DEB}+\widehat{DEC}=180^0\)
\(\Rightarrow\widehat{AEC}=90^0\)
Xét tam giác EDB và EDC có :
EB = EC ( gt )
\(\widehat{DEB}=\widehat{DEC}=90^0\)
ED chung
=> tam giác EDB = tam giác EDC ( c.g.c )
=> DB = DC Và \(\widehat{C}=\widehat{B}_2\)
c, ta có : \(\widehat{B_1}=\widehat{B}_2\) mà \(\widehat{B_2}=\widehat{C}\) Do đó \(\widehat{B}+\widehat{B_1}+\widehat{B_2}=2\widehat{C}\)
Trong tam giác vuông ABC thì \(\widehat{B}+\widehat{C}=90^0\) Hay \(3\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=30^0;\widehat{B}=30^0.2=60^0\)
A B C E D
Xét tam giác ABD và tam giác EBD có :
AB = BE (trung điểm)
góc ABD = góc EBD (phân giác) => tam giác ABD = tam giác EBD (c.g.c)
BD chung
=> góc BDA = góc BDE
Mà DB thuộc góc ADE
=> DB là phân giác của góc ADE
b) Ta có góc BAD = góc BED (2 góc tương ứng)
Vì góc BED kề bù với góc CED
=> góc BED + CED = 180
mà góc BED = 90
=> góc CED = 90
Xét tam giác BED và tam giác CED có :
BE = CE
Góc BED = góc CED => tam giác BED = tam giác CED (c.g.c)
DE chung
=> BD = CD (2 cạnh tương ứng)
c) tự làm
Từ 2 tam giác bằng nhau BED và tam giác CED , có
góc DBE = ECD (2 góc tương ứng )
Mà góc ABD = góc DBE = góc ECD (1)
Xét tam giác ABC có :
góc BAC + góc ABC + góc BCA = 180
Mà góc BAC = 90 ; và (1)
=> góc ABC + góc BCA = 2.góc ABD + góc ABD = 90
=> 3. góc ABD = 90
=> góc ABD = 30
=> ABD = góc DBE = góc ECD = 30
=> Góc ABC = 60 ; góc BCA = 30
a)
Có: BC = 2AB (gt) => AB = 1/2 BC (1)
Có: E là trung điểm của BC (gt) =>BE = 1/2 BC (2)
=> từ (1) và (2), ta có : AB=BE
xét tam giác ADB và tam giác EDB, ta có :
BD :cạnh chung
Góc ABD = góc DBE (gt)
AB=BE (chứng minh trên)
=> tam giác ADB = tam giác EDB (c.g.c)
=> góc ADB = góc BDE (hai góc tương ứng)
=> DB là tia phân giác của góc ADE
b) vì tam giác ADB = tam giác EDB (chứng minh trên)
=> góc A = góc BED = 90 độ (hai góc tương ứng)
*ta có : góc BED + góc DEC = 180 độ (kề bù)
=> góc DEC = 180 độ - góc BED
thay số : góc DEC = 180 độ - 90 độ = 90 độ
xét tam giác BDE (góc BED = 90 độ) và tam giác CDE (góc DEC = 90 độ), ta có :
DE :cạnh chung
BE=EC (gt)
=> tam giác BDE = tam giác CDE (hai cạnh góc vuông)
=> BD = DC (hai cạnh tương ứng)
câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB
Xét tam giác ABD và tam giác EBD có:
AB=EB(gt)
góc ABD=góc EBD(vì BD là phân giác góc ABC
Cạnh BD chung
Từ đó suy ra tam giác ABD= tam giác EBD
Suy ra góc ADB=góc EDB( 2 góc t/ ư)
Suy ra DB là phân giác góc ADE