K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{4}{5}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{5}=\dfrac{BD}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{5}=\dfrac{BD}{4}=\dfrac{CD+BD}{5+4}=\dfrac{3}{9}=\dfrac{1}{3}\)

\(\Rightarrow CD=\dfrac{1}{3}.5=\dfrac{5}{3}cm\)

3 tháng 3 2022

Xét \(\Delta ABC\) có :

AD là phân giác của \(\widehat{A}\)

=> \(\dfrac{DB}{AB}=\dfrac{DC}{AC}=\dfrac{DB+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{3}{9}=\dfrac{1}{3}\)

=>\(\dfrac{DC}{5}=\dfrac{1}{3}\Leftrightarrow DC=\dfrac{5}{3}\approx1,7\) CM

7 tháng 4 2017

A B C D 4cm 6cm

amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)

Áp dụng tính chất của đường phân giác ,ta có:

\(\frac{DB}{DC}\)\(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)

b,theo câu a ta có :

\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)

                         \(\Leftrightarrow DB=\frac{2.3}{3}\) 

                          \(\Leftrightarrow DB=2\)

 

a:

Sửa đề tam giác DEC

Xet ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC

b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)

=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)

19 tháng 3 2017

Xét tam giác ABC có AD là tia phân giác của góc A

theo t/c đường phân giác trong tam giác, ta có:

AB/BD=AC/DC.Áp dụng dãy tỉ số bằng nhau ta có:

AB/BD=AC/DChay4/BD=6/DC=4+6/BD+DC=4+6/BC=10/5.

Từ 4/BD=10/5 => BD=4*5/10=2(cm)

     6/DC=10/5 => DC=6*5/10=3(cm)

12 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)

=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)

=> Δ AHB ∾ Δ CHA (cmt)

 

 

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có:

\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)

Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)

b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)

25 tháng 4 2016

a) áp dụng định lí pitago vào tam giác abc được ab+ac2=bc2 suy ra bc2= 32+42=25 suy ra bc=5

có bd là phân giác góc abc nên ab/ad=bc/dc

dùng tính chất dãy tỉ số bằng nhau ta có ab/ad=bc/dc=(ab+bc)/(ad+dc)=(3+5)/4=2

nên ad=ab/2=3/2

dc=bc/2=5/2

b) dựa vào số đo độ đài cm được ec/ac=dc/bc

xét tam giác abc vuông và tam giác edc vuông có góc c chung và ea/ac=dc/bc nên suy ra 2 tam giác đó đồng dạng

c) tg abc và tg edc đồng dạng suy ra de vuông góc với bc

bd là phân giác abc có de vuông góc với bc, da vuông góc với ab nên suy ra de=da (tính châts này đã học ở lớp 7)