Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :
BC2 =AC2+AB2
hay BC^2 =12^2+9^2
BC^2=81+144=225
BC=15CM
b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc
=> AM=1/2 BC
hay AM=1/2.15
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc
=> GM=1/3 AM ( tính chất đường trung tuyến )
GM=1/3.7,5
GM=2,5 cm
Bài làm
A B C M D I
a) Xét tam giác ABD và tam giác MBD có:
AB = AM ( gt )
\(\widehat{ABD}=\widehat{DBC}\)( Do BD phân giác )
Cạnh BD chung
=>Tam giác ABD = tam giác MBD ( c.g.c )
b) Vì tam giác ABD = tam giác MBD ( cmt )
=> \(\widehat{BAD}=\widehat{BMD}\)
Mà \(\widehat{BAD}=90^0\)
=> \(\widehat{BAD}=\widehat{BMD}=90^0\)
=> DM vuông góc với BC
d) Gọi AO là tia đối của tia AB
Xét tam giác ABC có:
\(\widehat{OAC}=\widehat{ABC}+\widehat{BCA}\)
=> \(\widehat{OAC}>\widehat{BCA}\) (1)
Ta có: \(\widehat{OAC}+\widehat{BAC}=180^0\)( hai góc kề bù )
\(\widehat{CMD}+\widehat{BMD}=180^0\)( hai góc kề bù )
Mà \(\widehat{BAC}=\widehat{BMD}\)( cmt )
=> \(\widehat{OAC}=\widehat{CMD}\) (2)
Từ (1) và (2) => \(\widehat{CMD}>\widehat{BCA}\)
Xét tam giác MDC có:
\(\widehat{CMD}>\widehat{BCA}\)
Theo quan hệ giữa góc và cạnh đối diện có:
DC > DM
Mà DM > AD ( Do tam giác ABD = tam giác MBD )
=> DC > AD
Vậy DC > AD.
d) Xét tam giác ABI và tam giác MBI có:
AB = AM ( gt )
\(\widehat{ABI}=\widehat{MBI}\)( Do BD phân giác )
BI chung
=> Tam giác ABI = tam giác MBI ( c.g.c )
=> \(\widehat{BIA}=\widehat{BIM}\)
Mà \(\widehat{BIA}+\widehat{BIM}=180^0\)( Hai góc kề bù )
=> \(\widehat{BIA}=\widehat{BIM}=\frac{180^0}{2}=90^0\)
=> BI vuông góc AM (3)
Vì tam giác ABI = tam giác MBI ( cmt )
=> AI = IM (4)
Từ (3) và (4) => BI là trung trực của AM
Mà I thuộc BD
=> BD là đường trung trực của AM ( đpcm )
# Học tốt #
A B C D G M E F
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)
a)Ta có : 9^2+12^2=
=81+144=225
Căn bậc 2 cua 225 = 15
Vây tam giác ABC vuông
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)