Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{B}\) chung ; \(\widehat{BAC}=\widehat{BHA}=90\) độ
\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)
B) Xét \(\Delta ABE\) và \(\Delta ACB\) có :
\(\widehat{A}\) chung
\(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà \(\widehat{B}=2\widehat{C}\))
\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)
C) ta có tỉ lệ : \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)
Xét \(\Delta BHD\) và \(\Delta BAE\) có :
\(\widehat{BHD}=\widehat{BAE}=90\)độ
\(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )
\(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)
\(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)
BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!
Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
Tgiac ABE và ACF có g BAC chung, g AFC=g BEA
=> tg ABE~tg ACF(gg)=> AB/AC=AE/AF
=> AB.AF=AC.AE
Xét tg AEF và ABC có g BAC chung, AE/AF=AB/AC(cm ý a)
=> tg AEF~tgABC(gg)
=> G ABC=g AEF
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE