K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

10 tháng 5 2016

a)Ta có: BC2=52=25 (1)

AB2+AC2=32+42=25 (2)

Từ (1);(2)=>BC2=AB2+AC2(=25)

=>tam giác ABC vuông tại A (PyTaGo đảo)

b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:

BD:cạnh chung

^ABD=^EBD (vì BD là phân giác của ^ABE)

=>tam giác ABD=tam giác EBD(ch-gn)

=>DA=DE (cặp cạnh t.ứ)

b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)

Mà DA=DE(cmt)

=>DF>DE

10 tháng 5 2016

Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:

DA=DE(cmt)

^ADF=^EDC (2 góc đối đỉnh)

=>tam giác ADF=tam giác EDC (cgv-gnk)

=>DF=DC (cặp cạnh t.ứ)

DF ko bằng DE bn nhé!

5 tháng 5 2019

a, AB = 6 => AB^2 = 6^2 = 36

AC = 8 => AC^2 = 8^2 = 64

=> AB^2 + AC^2 = 36 + 64 = 100

BC = 10 => BC^2 = 10^2 = 100

=> BC^2 = AB^2 + AC^2 

=> tam giác ABC vuông tại A (định lí PTG đảo)

5 tháng 5 2019

a, xét tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là phân giác

góc DAB = góc DEB = 90 do ...

=> tam giác ABD = tam giác EBD (ch - gn)

=> AD = ED (đn)

29 tháng 3 2018

người ta bảo là ko biết ok

29 tháng 3 2018

thích thì nói thôi ý kiến à

5 tháng 5 2018

xét tam giác adf và tam giác edc ta có

   da=de (giải câu b)

góc fda = góc cde ( 2 góc đối đỉnh)

 góc a= góc e

vậy tam giác adf = tam giác edc(g.c.g)

=>df=dc(2 cạnh tương ứng)(1)

xét tam giác dec vuông tại e ta có

dc>de(dc là cạnh huyền)(2)

từ (1)và (2) =>df=de

11 tháng 4 2017

Hình cậu tự vẽ nhé:

a, Xét tam giác ABD vad tam giác AED có:

Góc ABD = góc AED= 90 độ 

Góc BAD = góc EAD ( Do AD là phân giác góc A)

AD chung

=> Tam giác ABD= tam giác AED ( g.c.g)

=> BD = DE ( hai cạnh tương ứng)

b, Vì góc ADC là góc ngoài tại đỉnh D

=> Góc ADC > góc ABD

=> AC > AD ( quan hệ cạnh đối diện - góc lớn hơn)

=> BD < DC ( quan hệ giữa đường xiên và hình chiếu)

c, Xét tam giác BDF và tam giác EDC có:

Góc DBF =  góc DEC = 90 độ

BD=ED ( do tam giác ABD = tam giác AED)

Góc BDF = góc EDC (  góc đối đỉnh)

=> Tam giác BDF = tam giác EDC ( g.c.g)

=> BF = EC ( 2 cạnh tương ứng)

Ta có AF = AB+BF

         AC= AE+EC

Mà AB=AC( do tam giác ABD = tam giác AED)

=> AF = AC

Xét tam giác AFD  và ta giác ACD có:

AF = AC ( c/m trên)

Góc FAD=CAD( do AD là tian phân giác góc A )

AD chung

=> tam giác AFD = tam giác ACD ( c.g.c)

d, Theo bất đẳng thức tam giác, ta có:

AB+BC > AC (1)

Lại có: BC > DE ( do BC.> BD) (2)

Từ (1);(2)=> AB+BC> AC+DE

a: BC=5cm
AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE