Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).
a: Xét tứ giác BDCE có
BE//CD
CE//BD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của ED
Xét △DEC và △BAC có
góc D chung
góc CDE= góc CBA (=90)
Vậy △DEC đồng dạng △BAC (g_g)
=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)
Xét △EAC và △DBC có
góc C chung
\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)
Vậy △EAC đồng dạng △BDC (c_g_c)
=> góc CEA = góc CDB
Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)
=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)
Ta có
\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\)
Mà góc CEA = góc CDB
=> góc AEB=góc BDA
Mà góc BDA=45
=> góc AEB=45
Xét tam giác EBA có
góc E=90
góc EBA=45
=>góc DAB =45
=> tam giác ABE vuông cân tại E
=> BA=BE
T I C K nha
____________________Chúc bạn học tốt ______________________
Các bạn giúp mình với ^^