K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔABD có BA=BD(cmt)

nên ΔABD cân tại B(Định nghĩa tam giác cân)

b) Ta có: ΔBAM=ΔBDM(cmt)

nên MA=MD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MD(cmt)

nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)

c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD(cmt)

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)

Suy ra: ME=MC(hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

d) Ta có: ΔAME=ΔDMC(cmt)

nên AE=DC(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DC=BC(D nằm giữa B và C)

mà BA=BD(cmt)

và AE=DC(cmt)

nên BE=BC

Xét ΔBEC có BE=BC(cmt)

nên ΔBEC cân tại B(Định nghĩa tam giác cân)

hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)

Ta có: ΔBAD cân tại B(cmt)

\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)

hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)

Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)

mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị

nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

8 tháng 2 2022

cặc ko bít làm

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

24 tháng 4 2022

undefined

a). Xét t/g : ABD và HBD có:

góc A = góc H = 90\(^o\)

BD cạnh chung

góc ABD = góc HBD ( BD là tia ph/giác góc B)

do đó :

t/g ABD = t/g HBD ( cạnh huyền - góc nhọn).

b, Vì t/g ABD = t/g HBD

=> AD = HD và AB=HB (1) ( 2 cạnh tương ứng).

Xét t/g ADE và HDC có:

góc A = góc H = 90\(^o\)

góc D1 = góc D2 ( đối đỉnh).

AD = HD ( cmt)

do đó : t/g ADE = t/g HDC ( cạnh góc vuông - góc nhọn kề nó).

=> AE = HC ( 2) ( 2 cạnh tương ứng).

Từ (1)  và (2) suy ra : AB + AE = HB + HC

Hay BE = BC

=> T/g BEC cân tại B.

c).

Theo cmt ta có AD = DH

Xét t/g vuông DHC vuông tại H có:

DH<DC

Do đó:

AD < DC

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: BA=BD

Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

mà \(\widehat{ABD}=60^0\)

nên ΔBAD đều

b: Ta có: ΔBAM=ΔBDM

nên MA=MD

Ta có: BA=BD

nên B nằm trên đường trung trực của AD\(\left(1\right)\)

Ta có: MA=MD

nên M nằm trên đường trung trực của AD\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của AD

c: Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Suy ra: ΔAME=ΔDMC

Suy ra: ME=MC

hay ΔMEC cân tại M