Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên canh AC lấy điểm K sao cho BD=CK
Vì tam giác ABC cân tại A nên AB=AC
Mà BD=CK => AB-BD=AC-CK
=> AD=AK
Lại có : góc A= 90 độ
=> tam giác DAK vuông cân tại A
=> DKA= (180 độ-90độ):2=45 độ
=> góc DKC= 180 độ-góc DKA= 180 độ - 45 độ= 135 độ.
Ta có: góc BDE + góc ADC= 90 độ
và góc ACD+góc ADC = 90 độ
=> góc BDE= góc ACD
Xét tam giác KDC và tam giác BED có:
góc DKC=góc DBE=135 độ
KC=BD
góc KCD=góc BED
=> tam giác KDC=tam giác BED (g.c.g)
=> DC=ED
=> tam giác DEC vuông cân tại D
a)Ta xét trong tam giác ABH có Góc H =90độ
=>BAHˆ+ABHˆ=90
mà BAHˆ+HACˆ=90=A^(gt)
=>ABHˆ=HACˆ
Xét tam giác BHA và Tam giác AIC có:
AB=AC(gt)
H^=AICˆ=90(gt)
ABHˆ=HACˆ(c/m trên)
=>Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn)
=>BH=AI(hai cạnh tương ứng)
b)Vì Tam giác BHA=Tam giác AIC(c/m trên)
=>IC=AH(hai cạnh tương ứng)
Xét trong tam giác vuông ABH có:
BH2+AH2=AB2
mà IC=AH
=>BH2+IC2=AB2(th này là D nằm giữa B và M)
Ta có thể c/m tiếp rằng D nằm giữa M và C thì ta vẫn c/m được Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn) và BH2+IC2=AC2=AB2
=>BH2+CI2 có giá trị ko đổi
c)Ta xét trong tam giác DAC có IC,AM là 2 đường cao và cắt nhau tại N(AM cũng là đường cao do là trung tuyến của tam giác cân xuất phát từ đỉnh và cũng chính là đường cao của đỉnh đó xuống cạnh đáy=>AM vuông góc với DC)
=>DN chính là đường cao còn lại=>DN vuông góc với AC(là cạnh đối diện đỉnh đó)
d)Ta dễ dàng tính được Tam giác DMN cân tại M=>DM=MN(dựa vào số đo của các góc và 1 số c/m trên)
Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC,Ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn)
=>ME=MF(là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc HICˆ)
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)=>IM là tia phân giác của HICˆ
a: Xét tứ giác AHDB có
AH//BD
AH=BD
DO đó: AHDB là hình bình hành
Suy ra: AB//DH
b: \(\widehat{BAH}=\widehat{ACB}=35^0\)
A B C D E F K
Qua E kẻ đường thẳng vuông góc với đoạn AD, cắt AB tại K.
EK vuông góc AD. Mà \(\Delta\)DAB vuông cân tại D => \(\Delta\)AEK vuông cân tại E
^BEK+^KEF=^BEF=900 (1)
^FEA+^KEF=^AEK=900 (2)
Từ (1) và (2) => ^BEK=^FEA (Cùng phụ với ^KEF)
\(\Delta\)AEK vuông cân tại E => EK=EA và ^EAK=^EKA=450.
^EKB kề bù với ^EKA => ^EKB=1800-^EKA=1800-450=1350 (3)
^EAF=^EAK+^KAF=450+900=1350 (4)
Từ (3) và (4) => ^EKB=^EAF=1350
Xét \(\Delta\)BEK và \(\Delta\)FEA có:
^BEK=^FEA
EK=EA (cmt) => \(\Delta\)BEK=\(\Delta\)FEA (g.c.g)
^EKB=^EAF
=> BE=FE (2 cạnh tương ứng) hay EF=EB (đpcm)
k cho mình!