Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:
$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{3}=\frac{16}{3}$ (cm)
$BC=BH+CH=3+\frac{16}{3}=\frac{25}{3}$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{4^2+(\frac{16}{3})^2}=\frac{20}{3}$ (cm)
A B C N M H
BÀI LÀM:
a) Vì tam giác ABC vuông tại A
Theo định lý Py-ta-go, ta có
BC2 = AB2 + AC2
=> BC2 = 52 + 122
=> BC2 = 25 + 144
=> BC2 = 169
=> BC = 13
Vì M là trung điểm của BC
=> BM = CM = BC / 2 = 13/2 = 6,5
Xét tam giác ABC và tam giác MNC có
Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)
Góc C là góc chung
=> Tam giác ABC đồng dạng với tam giác MNC (g.g)
\(=>\frac{AB}{MN}=\frac{AC}{MC}\)
\(=>\frac{5}{MN}=\frac{12}{6,5}\)
\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)
b) Vì tam giác ABC vuông tại A có AH vuông góc với BC
AB2 = BH.BC
\(=>BH=\frac{AB^2}{BC}\)
\(=>BH=\frac{5^2}{13}\)
\(=>BH=\frac{25}{13}\)
Vì BH + HC = BC
=> HC = BC - BH
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Vì tam giác ABC vuông tại A có AH vuông góc với BC
=> AH2 = BH.HC
=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}\)
=> \(AH=\frac{60}{13}\)
Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?
Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)
hay AH=2,4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)
A B C H
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
A B C H
Xét \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AC^2+AB^2\Leftrightarrow BC=\sqrt{AC^2+AB^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)(cm)
Xét \(\Delta ABC\)vuông tại A có AH \(\perp\)BC tại H , ta có :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5^2}{13}=\frac{25}{13}\)(cm)
\(AC^2=HC.BC\Leftrightarrow HC=\frac{AC^2}{BC}=\frac{12^2}{13}=\frac{144}{13}\)(cm)
\(AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=\sqrt{\frac{25}{13}.\frac{144}{13}}=\frac{60}{13}\)(cm)
Vậy ...
Nếu bạn muốn đổi ra số thập phân cũng đc nha nhưng mk để phân số cho gọn
........................................................................................Chúc bạn học tốt.................................................................................................