K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

Kẻ \(DH\perp BC\) tại H

Ta có: \(\hept{\begin{cases}AB\perp AC\\EC\perp AC\end{cases}\Rightarrow AB//CE\Rightarrow\widehat{ABD}=\widehat{BEC}}\)

\(\Rightarrow\widehat{BEC}=\widehat{EBC}\left(=\widehat{ABD}\right)\)

=> tam giác BEC cân tại  C

=> BC=CE

Tam giác BDA = TAM GIÁC BDH => AD=DH

Mà DH<DC (vì DH vuông góc với HC)

Áp dụng định lý Pytago vào tam giác vuông ta có:

\(BD^2=AB^2+AD^2;DE^2=CE^2+CD^2\)

Ta có: AB<BC=CE

VÀ AD<DC(DH<DC)

\(\Rightarrow BD^2< DE^2\Rightarrow BD< DE\)

Vậy chu vi tam giác ABD<  chu vi tam giác CDE (đpcm)

19 tháng 4 2018

Vẽ hộ mik cái hình với

19 tháng 4 2018

A B C D E

a) vì \(\widehat{ABD}=\widehat{DBC}\)( gt )                                    ( 1 )

Ta có : AB \(\perp\) AC ; CE \(\perp\) AC 

\(\Rightarrow\)AB // CE

\(\Rightarrow\)\(\widehat{ABD}=\widehat{DEC}\) ( hai góc so le trong )                ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\) \(\widehat{DBC}=\widehat{DEC}\)

\(\Rightarrow\)\(\Delta BCE\)cân tại C 

b) kẻ DH \(\perp\)BC ( tự vẽ )

Chứng minh được \(\Delta ADB=\Delta HDB\)( cạnh huyền - góc nhọn )

\(\Rightarrow\)DA = DH ( hai cạnh tương ứng )

Xét \(\Delta HDC\)vuông tại H có DH < DC nên DA < DC

Mà  \(\Delta BCE\)cân tại C 

\(\Rightarrow\)CE = CB 

Mà CB > AB 

\(\Rightarrow\)CE > AB

Áp dụng đinh lí Py-ta-go vào các tam giác vuông : \(\Delta DCE\)và \(\Delta ADB\) có :

DC2 + CE2 = DE2

AD2 + AB2 = BD2

Mà DC2 > AD2 ; CE2 > AB2

\(\Rightarrow\)DE2 > BD2

\(\Rightarrow\)DE > BD

\(\Rightarrow\)AD + BD + AB < DC + CE + DE

vậy chu vi tam giác ABD nhỏ hơn chu vi tam giác CDE

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=goc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBMN có

NA là trung tuýen

NI=2/3NA

=>I là trọng tâm

=>MI đi qua trung điểm của BN

26 tháng 3 2023

Cảm ơn ạ, 😍

 

15 tháng 4 2022

NGUUUUUUUU

13 tháng 1 2019

ĐỀ BÀI Ý B VÔ LÝ QUÁ K VỄ ĐƯỢC HÌNH

https://olm.vn/hoi-dap/tim-kiem?id=205295114093&id_subject=1&q=++++++++++Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.Tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+ABC+c%E1%BA%AFt+AC+t%E1%BA%A1i+D.Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+E+sao+cho+BE=BAa)cmr+tam+gi%C3%A1c+ABD=EBDb)+Qua+%C4%91i%E1%BB%83m+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+t%E1%BA%A1i+H,+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+c%E1%BA%AFt+tia+BA+t%E1%BA%A1i+F+cmr+BC=BEc)cmr+tam+gi%C3%A1c+ABC=EBFd)cmr+D,E,F+th%E1%BA%B3ng+h%C3%A0ng+%F0%9F%98%82+++++++++              BN THAM KHẢO Ở LINK NÀY

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)

nên ΔDBC cân tại D

13 tháng 5 2018

ABCDIE12

1) Xét hai tam giác ABI và EBI có:

AB = EB (gt)

B1ˆ=B2ˆ(gt)B1^=B2^(gt)

BI: cạnh chung

Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)

Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)

Mà BAIˆ=90oBAI^=90o

Do đó: BEIˆ=90oBEI^=90o

2) Xét hai tam giác vuông AID và EIC có:

IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)

AIDˆ=EICˆAID^=EIC^ (đối đỉnh)

Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)

Suy ra: ID = IC (hai cạnh tương ứng)

Do đó: ΔIDCΔIDC cân tại I

3) Ta có: AB = EB (gt)

⇒ΔABE⇒ΔABE cân tại B

⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE

hay BI ⊥⊥ AE (1)

Ta lại có: AB = EB (gt)

AD = EC (ΔAID=ΔEICΔAID=ΔEIC)

=> BD = BC

=> ΔBDCΔBDC cân tại B

=> BI là đường phân giác đồng thời là đường cao của tam giác

hay BI ⊥⊥ DC (2)

Từ (1) và (2) suy ra: AE // DC (đpcm)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath